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This lecture

 Excess risk

* Decomposition: Estimation vs approximation
Turing
Award

. . _ ~ Inside
° Probab|y apprOX|mat|on correct Iearnlng /\//

* Bounding generalisation error with high probability
* Single model: Hoeffding’s inequality

 Bayes risk — irreducible error

* Finite model class: Also use the union bound

* Importance & limitations of uniform deviation bounds



COMP90051 Statistical Machine Learning

Generalisation and Model Complexity

* Theory we’ve seen so far (mostly statistics) |\ \

# Asymptotic notions (consistency, efficiency) theory maths
**  Convergence could be really slow g S
* Model complexity undefined i

Want: finite sample theory; convergence rates, trade-offs

* Want: define model complexity and relate it to test error

** Test error can’t be measured in real life, but it can be provably
bounded!

* Growth function, VC dimension

* Want: distribution-independent, learner-independent theory
* A fundamental theory applicable throughout ML
*  Unlike bias-variance: distribution dependent, no model complexity,



Probably Approximately
Correct Learning

The bedrock of machine learning theory in
computer science.
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Standard setup

Problem we consider here: Supervised binary classification of
» datain X into label set Y = {—1,1}

What we have:

> iid data D™31% = {(x;,v,)}",~D some fixed unknown
distribution. The D" js called training data.

> Training error of a function f on D™ can be expressed by
N 1
RIf] ==X £(yi, f(x1)).

What we will do in supervised binary classification:

» Learn a function f;;, from a class of function F mapping
(classifying) X into Y such that f;,, = argminser R|f].
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Standard setup

Now, we have

. s : 1
> f, = argmingcy RIf] = argmmfefﬁzﬁl f(y“f(xi))
and want to

I analyse the performance of f,, on new data from the |
| fixed distribution D. |

Can you write down the test error based on f,,, and D?
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Standard setup

Now, we have

. s : 1
> f, = argmingcy RIf] = argmmfefﬁzﬁl f(y“f(xi))
and want to

I analyse the performance of f,, on new data from the |
| fixed distribution D. |

Can you write down the test error based on f,,, and D?

gfg"t’teerf[fm]lR [fin] = Ecxyy~p|€(Y, fm(X))] to represent the
risk (or test error) of f,,, on D.
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Standard setup

Now, we have

> f, = argmingcy ﬁ[f] = argminf57%2ﬁ1 f(y“f(xi))

and want to (The Theoretical AIM)

T e EEEE—_—————— -
: analyse R|[f,,,| = Ex y)~D [{(Y, fm(X))] I
N e e e e e mm e Em o mm mm mm Em o Em mm mm mm e = = /

* What parts depend on the sample of data

> Empirical risk R[f] that averages loss over the sample

> fm € F the learned model (it could be same sample or
different; theory is actually fully general here)
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The Bayes Risk:
One thing we cannot ignore

* We usually cannot even hope for perfection!
* € infr R[f] called the Bayes risk;

# cannot expect zero R[f] and a clear decision boundary.

* Thus, we care about the following risk more:

R[fm: o

Excess risk
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Decomposed Risk: The good, bad and ugly

R[fm] — — (R[fm] — R[f*]) + (R f*] — )

* Good: what we’d aim for in our class, with infinite data
# R[f"] truerisk of best in class f* € argmin¢er R|f]

* Bad: we get what we get and don’t get upset
 R|fy,] true risk of learned f,,, € argminger R[f]+ C|If]|* (e.g.)

. : we usually cannot even hope for perfection!
* € infr R[f] called the Bayes risk;

# cannot expect zero R[f] and a clear decision boundary.
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Decomposed Risk: The good, bad and ugly

\R[fm]_ l:(\R[fm]_R[f*]?_l'gR[f*]_ ,)

h 4 A 4

Excess risk Estimation error Approximation error

* Good: what we’d aim for in our class, with infinite data
# R[] true risk of best in class " € argminser R|f]

* Bad: we get what we get and don’t get upset
 R|fy,] true risk of learned f,,, € argminger R[f]+ C|If]|* (e.g.)

. : we usually cannot even hope for perfection!
* € infr R[f] called the Bayes risk;
# cannot expect zero R[f] and a clear decision boundary.

11
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A familiar trade-off: More intuition

* simple family =» may underfit due to approximation error

* complex family =» may overfit due to estimation error

o Excess Risk o
Approximation Estimation
error error
< >

simple model class complex model class

12
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AbOUt Bayes r|Sk Named after Bayes. Not

\ Bayesian ML.

Y

1 i I -
,—_——vx

* Bayesrisk R* € inf; R[f]
** Best risk possible, ever; but can be large

* Depends on distribution and loss function

* Bayes classifier achieves Bayes risk
8 fBayes(x) =sgnE(Y|X = x)

13
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Let’s focus on R[fm] B

Since we don’t know data distribution, we
need to bound generalisation to be small

« Bound by test error R[f;,] = 2 X1, f(X;, ;)
+ Abusing notation: f(X;,Y;) = I(Y;, f(X)))

R[fml < Rlfml + e(m, F)

Unlucky training sets, no always-guarantees possible!

Leslie Valiant

With probability > 1 — §: R[f,,] < R[f.,] + e(m, F, §)

Called Probably Approximately Correct (PAC) learning

« F called PAC learnable if m = O(poly(1/¢,1/6)) to learn f,,, forany €, 6
* Won Leslie Valiant (Harvard) the 2010 Tur ng Award

Don’t require
exponential growth

Later: Why this bounds estimation error. e o

14
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Mini Summary

* Excess risk as the goal of ML
* Decomposition into approximation, estimation errors

* Probably Approximately Correct (PAC) learning
* Like asymptotic theory in stats, but for finite sample size

* \Worst-case on distributions: We don’t want to assume
something unrealistic about where the data comes from

* \Worst-case on models: We don’t want a theory that applies to
narrow set of learners, but to ML in general

* We want it to produce a useful measure of model complexity

Next: First step to PAC theory — bounding single model risk

15



Bounding true risk
of one function

One step at a time

16
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We need a concentration inequality

R[f]’s PDF

1—06(m,¢)

CDF(R[f] — ¢) 1 — CDF(R[f] + ¢

* R[f]is an unbiased estimate of R[f] for any fixed f (why?)
* That means on average R[f] lands on R[f]

What’s the likelihood 1 — § that R[f] lands within & of R[f]? Or
more precisely, what 1 — o(m, £) achieves a given ?

* Intuition: Just bounding CDF of R[f], independent of distribution!/! .
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Hoeffding’s inequality

* Many such concentration inequalities; a simplest one...

* Theorem: Let Z4, ..., Z,,, Z be iid random variables and
h(z) € [a, b] be a bounded function. Foralle > 0

2me?
Pr( ZS)SZexp<—(b_a)2>

1 2me?
Pr (IE[h(Z)] - i=1h(Zi) = 5) < exp (_ (b — a)z)

m

1
EIh@)] —- )~ h(Z)

* Two-sided case in words: The probability
that the empirical average is far
from the expectation is

18
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Et voila: A bound on true risk!

Result! R[f] < R[f] + /1°g2(;/5) with high probability (w.h.p.) = 1 — &

Proof
* Take the Z; as labelled examples (X;, Y;)

* Take h(X,Y) = I(Y, f (X)) zero-one loss for some fixed f € F
then h(X,Y) € [0,1]

e Apply one-sided Hoeffding: Pr(R[f] — R[f] = e) < exp(—2me?)

. log(1/6) . . .
* Then, substitute € = / ng(m/ ) into the above inequality, we have

Pr <R[f] —R[f]= 1°g2(;{5)> <&, ie., Pr (R[f] —R[f] < /%) >1-6

19
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Common probability ‘tricks’

Inversion:
+ For any event 4, Pr(4) = 1 — Pr(4) A
+ Application: Pr(X > ¢) <6

impliesPr( X <e)>1-6

Solving for, in high-probability bounds:
# For given & with §(¢) function €: Pr(X > ¢€) < §(¢)
+ Given 8’ can write e = §71(8): Pr(X > 671(8")) < &
* Let’s you specify either parameter
* Sometimes sample size m a variable we can solve for too

Try to derive the bound on your own!

20
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Mini Summary

e Goal: Bound true risk of a classifier based on its
empirical risk plus “stuff”

e Caveat: Bound is “with high probability” since we
could be unlucky with the data

* Approach: Hoeffding’s inequality which bounds how
far a mean is likely to be from an expectation

Next: PAC learning as uniform deviation bounds

21
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Uniform deviation bounds

Why we need our bound to simultaneously
(or uniformly) hold over a family of functions.

22
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Our bound doesn’t hold for f = f,,

‘‘‘‘‘

4 .

risk

.....

4
-------

.......

Problematic that f,,

, _ depends on data
* Result says there’s set S of good samples for which

R[f] < + andPr(ZeS)>1-96

* But for different functions f1, f5, ... we might get very different sets S, S5, ...

* S observed may be bad for f,,,. Learning minimises 7 | f,,, |, exacerbating this

23
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Uniform deviation bounds

uniform deviation 3 .................................. :,... sample 2

sample 3

fm

We could analyse risks of f,,, from specific learner
*  But repeating for new learners? How to compare learners?
* Note there are ways to do this, and data-dependently

PDF of UnifDev

Bound uniform deviations across whole class F

RUfl = Rl fin] < supges(RIF1 - A1/ <2 7P 0P

+ \Worst deviation over an entire class bounds learned risk!
* Convenient, but could be much worse than the actual gap for f,,

24
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Relation to estimation error?

* Recall estimation error? Learning part of excess risk!

Rlfml = R* = (RIfn] = RIf"D + RIf*] = R7)

‘
Theorem: ERM’s estimation error is R
at most twice the uniform divergence

* Proof: a bunch of algebra!
Rlfm] < (RIf*] = RIfinl) + RIfin] — RIf7] + RIS
= R[f*] = RIf"]1 + Rlfm] — Rlfml + RIf"]
< [RIf*1 = RIf*1] + [RUfin] = Rfw]| + RIf]
< 2 supser|RIf] = RIf]| + RIf"]

25
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Mini Summary

* Why Hoeffding doesn’t cover a model f,,, learned
from data, only a fixed data-independent f

e Uniform deviation idea: Cover the worst case
deviation between risk and empirical risk, across F

* Advantages: works for any learner, data distribution

* Connection back to bounding estimation error

Next: Next step for PAC learning — finite classes

26



Error bound for
finite function classes

Our first uniform deviation bound

27
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The Union Bound

* If each model f having large risk deviation is a “bad event”,
we need a tool to bound the probability that any bad event
happens. |.e. the union of bad events!

* Union bound: for a sequence of events 44, 45, ...
Pr (U Ai) < z Pr(A;)
i i
Proof:

Define B; = A;\ UiZ] 4; with By = 4;.

1. We know: U; B; = U; 4; (could prove by induction)

2. The B; are disjoint (empty intersections)

3. We know: B; € A; so Pr(B;) < Pr(4;) by monotonicity
4.Pr(U; A;) = Pr(U;B;) = X; Pr(B;) < X; Pr(4;)

28
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Bound for finite classes F

A uniform deviation bound over any finite class or distribution

Theorem: Consider any 6 > 0 and finite class F. Then w.h.p

log |F|+log(1/6)
2m

atleast 1 — &: Forall f € F, R[f] < R[f] +\/

Proof:

* If each model f having large risk deviation is a “bad event”,
we bound the probability that any bad event happens.

* Pr(3f € F,R[f]1 - RIf] = €) < Xrer Pr(RIf] — RIf] = ¢)
e < |F|exp(—2me?) by the union bound
* Followed by inversion, setting § = |F| exp(—2me?)

29
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Discussion

* Hoeffding’s inequality only uses boundedness of the loss, not the
variance of the loss random variables

** Fancier concentration inequalities leverage variance

* Uniform deviation is worst-case, ERM on a very large over-
parametrised F may approach the worst-case, but learners
generally may not

*  Custom analysis, data-dependent bounds, PAC-Bayes, etc.

 Dependent data?
*  Martingale theory

* Union bound is in general loose, as bad is if all the bad events were
independent (not necessarily the case even though underlying data
modelled as independent); and finite F

* VC theory coming up next!

30
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Mini Summary

* More on uniform deviation bounds
* The union bound (generic tool in probability theory)

* Finite classes: Bounding uniform deviation with
union+Hoeffding

Next time: PAC learning with infinite function classes!
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