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This lecture

• Excess risk
* Decomposition: Estimation vs approximation
* Bayes risk – irreducible error

• Probably approximation correct learning

• Bounding generalisation error with high probability
* Single model: Hoeffding’s inequality
* Finite model class: Also use the union bound

• Importance & limitations of uniform deviation bounds
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Generalisation and Model Complexity

• Theory we’ve seen so far (mostly statistics)
* Asymptotic notions (consistency, efficiency)
* Convergence could be really slow 
* Model complexity undefined

• Want: finite sample theory; convergence rates, trade-offs

• Want: define model complexity and relate it to test error
* Test error can’t be measured in real life, but it can be provably 

bounded!
* Growth function, VC dimension

• Want: distribution-independent, learner-independent theory
* A fundamental theory applicable throughout ML
* Unlike bias-variance: distribution dependent, no model complexity,
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Probably Approximately 
Correct Learning

The bedrock of machine learning theory in 
computer science.
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Standard setup

Problem we consider here: Supervised binary classification of
Ø data in 𝒳 into label set 𝒴 = −1,1

What we have: 

Ø iid data 𝐷!"#$% = {(𝑥&, 𝑦&)}&'() ~𝐷 some fixed unknown 
distribution. The 𝐷!"#$% is called training data.

Ø Training error of a function 𝑓 on 𝐷!"#$% can be expressed by
,𝑅 𝑓 = (

)
∑&'() ℓ 𝑦&, 𝑓 𝑥& .

What we will do in supervised binary classification: 

Ø Learn a function 𝑓) from a class of function ℱ mapping 
(classifying) 𝒳 into 𝒴 such that 𝑓) = argmin*∈ℱ ,𝑅 𝑓 .
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Now, we have

Ø 𝑓! = argmin"∈ℱ )𝑅 𝑓 = argmin"∈ℱ
%
!
∑&'%! ℓ 𝑦& , 𝑓 𝑥&

and want to 

analyse the performance of 𝑓!  on new data from the 
fixed distribution 𝐷.

Can you write down the test error based on 𝑓!  and 𝐷?

Standard setup
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Now, we have

Ø 𝑓! = argmin"∈ℱ )𝑅 𝑓 = argmin"∈ℱ
%
!
∑&'%! ℓ 𝑦& , 𝑓 𝑥&

and want to 

analyse the performance of 𝑓!  on new data from the 
fixed distribution 𝐷.

Can you write down the test error based on 𝑓!  and 𝐷?

Standard setup
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𝑅 𝑓) = 𝔼 -,/ ~1 ℓ 𝑌, 𝑓) 𝑋 to represent the
risk (or test error) of 𝑓) on 𝐷.

A lower 𝑅 𝑓!
is better.
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Now, we have

Ø 𝑓! = argmin"∈ℱ )𝑅 𝑓 = argmin"∈ℱ
%
!
∑&'%! ℓ 𝑦& , 𝑓 𝑥&

and want to (The Theoretical AIM)

analyse 𝑅 𝑓! = 𝔼 (,* ~, ℓ 𝑌, 𝑓! 𝑋

• What parts depend on the sample of data
ØEmpirical risk ,𝑅[𝑓] that averages loss over the sample
Ø𝑓) ∈ ℱ the learned model (it could be same sample or 

different; theory is actually fully general here)

Standard setup
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The Bayes Risk:
One thing we cannot ignore

• We usually cannot even hope for perfection!
* 𝑅∗ ∈ inf* 𝑅 𝑓 called the Bayes risk; 
* cannot expect zero 𝑅 𝑓 and a clear decision boundary.

• Thus, we care about the following risk more:

𝑅 𝑓! − 𝑅∗
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Decomposed Risk: The good, bad and ugly

𝑅 𝑓! − 𝑅∗ = 𝑅 𝑓! − 𝑅 𝑓∗ + 𝑅 𝑓∗ − 𝑅∗

• Good: what we’d aim for in our class, with infinite data
* 𝑅 𝑓∗ true risk of best in class 𝑓∗ ∈ argmin*∈ℱ 𝑅 𝑓

• Bad: we get what we get and don’t get upset
* 𝑅 𝑓) true risk of learned 𝑓) ∈ argmin*∈ℱ ,𝑅 𝑓 + 𝐶 𝑓 5 (e.g.)

• Ugly: we usually cannot even hope for perfection!
* 𝑅∗ ∈ inf* 𝑅 𝑓 called the Bayes risk; 
* cannot expect zero 𝑅 𝑓 and a clear decision boundary.
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𝑅 𝑓! − 𝑅∗ = 𝑅 𝑓! − 𝑅 𝑓∗ + 𝑅 𝑓∗ − 𝑅∗

• Good: what we’d aim for in our class, with infinite data
* 𝑅 𝑓∗ true risk of best in class 𝑓∗ ∈ argmin*∈ℱ 𝑅 𝑓

• Bad: we get what we get and don’t get upset
* 𝑅 𝑓) true risk of learned 𝑓) ∈ argmin*∈ℱ ,𝑅 𝑓 + 𝐶 𝑓 5 (e.g.)

• Ugly: we usually cannot even hope for perfection!
* 𝑅∗ ∈ inf* 𝑅 𝑓 called the Bayes risk; 
* cannot expect zero 𝑅 𝑓 and a clear decision boundary.

Decomposed Risk: The good, bad and ugly
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A familiar trade-off: More intuition
• simple family è may underfit due to approximation error

• complex family è may overfit due to estimation error
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About Bayes risk

• Bayes risk 𝑅∗ ∈ inf" 𝑅 𝑓
* Best risk possible, ever; but can be large
* Depends on distribution and loss function

• Bayes classifier achieves Bayes risk
* 𝑓6789: 𝑥 = sgn𝔼 𝑌|𝑋 = 𝑥
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𝒳

𝒴
1

-1

𝔼 𝑌|𝑋 = 𝑥

sgn𝔼 𝑌|𝑋 = 𝑥

Named after Bayes. Not 
Bayesian ML.
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Let’s focus on 𝑅 𝑓!
• Since we don’t know data distribution, we

need to bound generalisation to be small
* Bound by test error .𝑅 𝑓! = !

"
∑"#$! 𝑓(𝑋", 𝑌")

* Abusing notation: 𝑓 𝑋", 𝑌" = 𝑙(𝑌", 𝑓 𝑋" )
𝑅 𝑓) ≤ ,𝑅 𝑓) + 𝜀(𝑚,ℱ)

• Unlucky training sets, no always-guarantees possible!

• With probability ≥ 1 − 𝛿: 𝑅 𝑓) ≤ ,𝑅 𝑓) + 𝜀(𝑚,ℱ, 𝛿)

• Called Probably Approximately Correct (PAC) learning
* ℱ called PAC learnable if 𝑚 = 𝑂(poly(1/𝜀, 1/𝛿)) to learn 𝑓! for any 𝜀, 𝛿
* Won Leslie Valiant (Harvard) the 2010 Turing Award

• Later: Why this bounds estimation error.
14
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Mini Summary

• Excess risk as the goal of ML

• Decomposition into approximation, estimation errors

• Probably Approximately Correct (PAC) learning
* Like asymptotic theory in stats, but for finite sample size
* Worst-case on distributions: We don’t want to assume 

something unrealistic about where the data comes from
* Worst-case on models: We don’t want a theory that applies to 

narrow set of learners, but to ML in general
* We want it to produce a useful measure of model complexity

Next: First step to PAC theory – bounding single model risk
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Bounding true risk 
of one function
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One step at a time
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We need a concentration inequality

• !𝑅[𝑓] is an unbiased estimate of 𝑅[𝑓] for any fixed 𝑓 (why?)

• That means on average !𝑅[𝑓] lands on 𝑅[𝑓]

• What’s the likelihood 1 − δ that !𝑅[𝑓] lands within 𝜀 of 𝑅[𝑓]? Or 
more precisely, what 1 − δ(𝑚, 𝜀) achieves a given 𝜀 > 0?

• Intuition: Just bounding CDF of !𝑅[𝑓], independent of distribution!!
17

Public domain, Wikipedia𝑅[𝑓]F𝑅"F𝑅# F𝑅$ F𝑅%F𝑅&

𝟐𝜺

1 − 𝛿(𝑚, 𝜀)

1 − CDF(𝑅 𝑓 + 𝜀)CDF(𝑅 𝑓 − 𝜀)

F𝑅[𝑓]’s PDF
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Hoeffding’s inequality
• Many such concentration inequalities; a simplest one…

• Theorem: Let 𝑍(, … , 𝑍), 𝑍 be iid random variables and
ℎ 𝑧 ∈ [𝑎, 𝑏] be a bounded function. For all 𝜀 > 0

Pr 𝔼 ℎ(𝑍) −
1
𝑚
H

"#$

!
ℎ(𝑍") ≥ 𝜀 ≤ 2 exp −

2𝑚𝜀%

(𝑏 − 𝑎)%

Pr 𝔼 ℎ(𝑍) −
1
𝑚
+

"#$

!
ℎ(𝑍") ≥ 𝜀 ≤ exp −

2𝑚𝜀%

(𝑏 − 𝑎)%

• Two-sided case in words: The probability 
that the empirical average is far 
from the expectation is small.

18
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Et voila: A bound on true risk!

Result! 𝑅 𝑓 ≤ .𝑅 𝑓 + &'( $/*
%!

with high probability (w.h.p.) ≥ 1 − 𝛿

Proof
• Take the 𝑍" as labelled examples (𝑋", 𝑌")

• Take ℎ 𝑋, 𝑌 = 𝑙 𝑌, 𝑓(𝑋) zero-one loss for some fixed 𝑓 ∈ ℱ
then ℎ 𝑋, 𝑌 ∈ 0,1

• Apply one-sided Hoeffding: Pr 𝑅 𝑓 − .𝑅 𝑓 ≥ 𝜀 ≤ exp −2𝑚𝜀%

• Then, substitute 𝜀 = &'( $/*
%!

into the above inequality, we have

• Pr 𝑅 𝑓 − .𝑅 𝑓 ≥ &'( $/*
%!

≤ 𝛿, i.e., Pr 𝑅 𝑓 − .𝑅 𝑓 ≤ &'( $/*
%!

≥ 1 − 𝛿
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Common probability ‘tricks’

• Inversion:
* For any event 𝐴, Pr �̅� = 1 − Pr 𝐴
* Application: Pr 𝑋 > 𝜀 ≤ 𝛿

implies Pr 𝑋 ≤ 𝜀 ≥ 1 − 𝛿

• Solving for, in high-probability bounds:
* For given 𝜀 with 𝛿(𝜀) function 𝜀: Pr 𝑋 > 𝜀 ≤ 𝛿(𝜀)
* Given 𝛿′ can write 𝜀 = 𝛿T((𝛿′): Pr 𝑋 > 𝛿T((𝛿′) ≤ 𝛿′
* Let’s you specify either parameter
* Sometimes sample size 𝑚 a variable we can solve for too 
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Try to derive the bound on your own!
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Mini Summary

• Goal: Bound true risk of a classifier based on its 
empirical risk plus “stuff”

• Caveat: Bound is “with high probability” since we 
could be unlucky with the data

• Approach: Hoeffding’s inequality which bounds how 
far a mean is likely to be from an expectation

Next: PAC learning as uniform deviation bounds

21



COMP90051 Statistical Machine Learning

Uniform deviation bounds

22

Why we need our bound to simultaneously
(or uniformly) hold over a family of functions.
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Our bound doesn’t hold for 𝑓 = 𝑓!

• Result says there’s set 𝑆 of good samples for which

𝑅 𝑓 ≤ .𝑅 𝑓 + &'( $/*
%!

and Pr 𝐙 ∈ 𝑆 ≥ 1 − 𝛿

• But for different functions 𝑓$, 𝑓%, … we might get very different sets 𝑆$, 𝑆%, …

• 𝑆 observed may be bad for 𝑓!. Learning minimises .𝑅 𝑓! , exacerbating this
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ℱ

ris
k

𝑅 𝑓

𝑓)

𝟐𝜺
F𝑅" 𝑓

F𝑅& 𝑓

Problematic that 𝑓!
depends on data
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Uniform deviation bounds

• We could analyse risks of 𝑓! from specific learner
* But repeating for new learners? How to compare learners?
* Note there are ways to do this, and data-dependently

• Bound uniform deviations across whole class ℱ
𝑅 𝑓! − !𝑅 𝑓! ≤ sup"∈ℱ 𝑅 𝑓 − !𝑅 𝑓 ≤ ?

* Worst deviation over an entire class bounds learned risk!
* Convenient, but could be much worse than the actual gap for 𝑓"
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ℱ

𝑅
𝑓
−
. 𝑅
[𝑓
]

𝑓)

sample 1
sample 2

sample 3

uniform deviation 1
uniform deviation 2
uniform deviation 3

Public domain, Wikipedia

PDF of UnifDev

U𝑈𝐷"U𝑈𝐷&U𝑈𝐷%
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Relation to estimation error?

• Recall estimation error? Learning part of excess risk!
𝑅 𝑓! − 𝑅∗ = 𝑅 𝑓! − 𝑅 𝑓∗ + 𝑅 𝑓∗ − 𝑅∗

Theorem: ERM’s estimation error is 
at most twice the uniform divergence

* Proof: a bunch of algebra!
𝑅 𝑓) ≤ ,𝑅 𝑓∗ − ,𝑅 𝑓) + 𝑅 𝑓) − 𝑅 𝑓∗ + 𝑅 𝑓∗

= ,𝑅 𝑓∗ − 𝑅 𝑓∗ + 𝑅 𝑓) − ,𝑅 𝑓) + 𝑅 𝑓∗

≤ 𝑅 𝑓∗ − ,𝑅 𝑓∗ + 𝑅 𝑓) − ,𝑅 𝑓) + 𝑅 𝑓∗

≤ 2 sup*∈ℱ 𝑅 𝑓 − ,𝑅 𝑓 + 𝑅 𝑓∗
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Mini Summary

• Why Hoeffding doesn’t cover a model 𝑓! learned 
from data, only a fixed data-independent 𝑓

• Uniform deviation idea: Cover the worst case 
deviation between risk and empirical risk, across ℱ

• Advantages: works for any learner, data distribution

• Connection back to bounding estimation error

Next: Next step for PAC learning – finite classes
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Error bound for 
finite function classes

27

Our first uniform deviation bound
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The Union Bound
• If each model 𝑓 having large risk deviation is a “bad event”, 

we need a tool to bound the probability that any bad event 
happens. I.e. the union of bad events!

• Union bound: for a sequence of events 𝐴(, 𝐴5…

Pr [
&
𝐴& ≤\

&
Pr 𝐴&

Proof:
Define 𝐵" = 𝐴"\⋃+#$",$ 𝐴+ with 𝐵$ = 𝐴$.
1. We know: ⋃"𝐵" = ⋃"𝐴" (could prove by induction)
2. The 𝐵" are disjoint (empty intersections)
3. We know: 𝐵" ⊆ 𝐴" so Pr(𝐵") ≤ Pr 𝐴" by monotonicity
4. Pr ⋃"𝐴" = Pr ⋃" B" = ∑" Pr 𝐵" ≤ ∑" Pr 𝐴"
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Bound for finite classes ℱ

• A uniform deviation bound over any finite class or distribution

Theorem: Consider any 𝛿 > 0 and finite class ℱ. Then w.h.p

at least 1 − 𝛿: For all 𝑓 ∈ ℱ, 𝑅 𝑓 ≤ ,𝑅 𝑓 + XYZ |ℱ|[XYZ (/]
5)

Proof:
• If each model 𝑓 having large risk deviation is a “bad event”, 

we bound the probability that any bad event happens.
• Pr ∃𝑓 ∈ ℱ, 𝑅 𝑓 − ,𝑅 𝑓 ≥ ε ≤ ∑*∈ℱ Pr 𝑅 𝑓 − ,𝑅 𝑓 ≥ ε
• ≤ |ℱ| exp −2𝑚𝜀5 by the union bound
• Followed by inversion, setting δ = ℱ exp −2𝑚𝜀5
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Discussion

• Hoeffding’s inequality only uses boundedness of the loss, not the 
variance of the loss random variables
* Fancier concentration inequalities leverage variance

• Uniform deviation is worst-case, ERM on a very large over-
parametrised ℱ may approach the worst-case, but learners 
generally may not
* Custom analysis, data-dependent bounds, PAC-Bayes, etc.

• Dependent data?
* Martingale theory

• Union bound is in general loose, as bad is if all the bad events were 
independent (not necessarily the case even though underlying data 
modelled as independent); and finite 𝓕
* VC theory coming up next!
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Mini Summary

• More on uniform deviation bounds

• The union bound (generic tool in probability theory)

• Finite classes: Bounding uniform deviation with 
union+Hoeffding

Next time: PAC learning with infinite function classes!
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