Lecture 6. PAC Learning Theory

COMP90051 Statistical Machine Learning

Lecturer: Feng Liu

This lecture

- Excess risk
 - Decomposition: Estimation vs approximation
 - Bayes risk irreducible error

- Turing Award Inside
- Probably approximation correct learning
- Bounding generalisation error with high probability
 - Single model: Hoeffding's inequality
 - Finite model class: Also use the union bound
- Importance & limitations of uniform deviation bounds

Generalisation and Model Complexity

- Theory we've seen so far (mostly statistics)
 - Asymptotic notions (consistency, efficiency)
 - Convergence could be really slow
 - Model complexity undefined

- Want: finite sample theory; convergence rates, trade-offs
- Want: define model complexity and relate it to test error
 - * Test error can't be measured in real life, but it can be provably bounded!
 - Growth function, VC dimension
- Want: distribution-independent, learner-independent theory
 - A fundamental theory applicable throughout ML
 - Unlike bias-variance: distribution dependent, no model complexity,

Probably Approximately Correct Learning

The bedrock of machine learning theory in computer science.

Problem we consider here: Supervised binary classification of

 \triangleright data in \mathcal{X} into label set $\mathcal{Y} = \{-1,1\}$

What we have:

- iid data $D^{\text{train}} = \{(x_i, y_i)\}_{i=1}^m \sim D \text{ some fixed unknown distribution. The } D^{\text{train}} \text{ is called training data.}$
- Training error of a function f on D^{train} can be expressed by $\widehat{R}[f] = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i)).$

What we will do in supervised binary classification:

Learn a function f_m from a class of function \mathcal{F} mapping (classifying) \mathcal{X} into \mathcal{Y} such that $f_m = \operatorname{argmin}_{f \in \mathcal{F}} \widehat{R}[f]$.

Now, we have

$$f_m = \operatorname{argmin}_{f \in \mathcal{F}} \widehat{R}[f] = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i))$$

and want to

analyse the performance of f_m on new data from the fixed distribution D.

Can you write down the test error based on f_m and D?

Now, we have

$$f_m = \operatorname{argmin}_{f \in \mathcal{F}} \widehat{R}[f] = \operatorname{argmin}_{f \in \mathcal{F}} \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i))$$

and want to

analyse the performance of f_m on new data from the fixed distribution D.

Can you write down the test error based on f_m and D?

```
A lower R[f_m] R[f_m] = \mathbb{E}_{(X,Y)\sim D} [\ell(Y,f_m(X))] to represent the risk (or test error) of f_m on D.
```

Now, we have

and want to (The Theoretical AIM)

analyse
$$R[f_m] = \mathbb{E}_{(X,Y)\sim D}[\ell(Y, f_m(X))]$$

- What parts depend on the sample of data
 - \triangleright Empirical risk $\widehat{R}[f]$ that averages loss over the sample
 - $rackleright > f_m \in \mathcal{F}$ the learned model (it could be same sample or different; theory is actually fully general here)

The Bayes Risk: One thing we cannot ignore

- We usually cannot even hope for perfection!
 - * $R^* \in \inf_f R[f]$ called the Bayes risk;
 - * cannot expect zero R[f] and a clear decision boundary.
- Thus, we care about the following risk more:

$$R[f_m] - R^*$$
Excess risk

Decomposed Risk: The good, bad and ugly

$$R[f_m] - R^* = (R[f_m] - R[f^*]) + (R[f^*] - R^*)$$

- Good: what we'd aim for in our class, with infinite data
 - * $R[f^*]$ true risk of best in class $f^* \in \operatorname{argmin}_{f \in \mathcal{F}} R[f]$
- Bad: we get what we get and don't get upset
 - * $R[f_m]$ true risk of learned $f_m \in \arg\min_{f \in \mathcal{F}} \widehat{R}[f] + C||f||^2$ (e.g.)
- Ugly: we usually cannot even hope for perfection!
 - * $R^* \in \inf_f R[f]$ called the Bayes risk;
 - * cannot expect zero R[f] and a clear decision boundary.

Decomposed Risk: The good, bad and ugly

$$\underbrace{R[f_m] - R^*}_{\text{Excess risk}} = \underbrace{(R[f_m] - R[f^*])}_{\text{Estimation error}} + \underbrace{(R[f^*] - R^*)}_{\text{Approximation error}}$$

- Good: what we'd aim for in our class, with infinite data
 - * $R[f^*]$ true risk of best in class $f^* \in \operatorname{argmin}_{f \in \mathcal{F}} R[f]$
- Bad: we get what we get and don't get upset
 - * $R[f_m]$ true risk of learned $f_m \in \arg\min_{f \in \mathcal{F}} \widehat{R}[f] + C||f||^2$ (e.g.)
- Ugly: we usually cannot even hope for perfection!
 - * $R^* \in \inf_f R[f]$ called the Bayes risk;
 - * cannot expect zero R[f] and a clear decision boundary.

A familiar trade-off: More intuition

- simple family
 may underfit due to approximation error
- complex family
 may overfit due to estimation error

- Bayes risk $R^* \in \inf_f R[f]$
 - * Best risk possible, ever; but can be large
 - Depends on distribution and loss function
- Bayes classifier achieves Bayes risk

*
$$f_{Bayes}(x) = \operatorname{sgn} \mathbb{E}(Y|X=x)$$

Let's focus on $R[f_m]$

- Since we don't know data distribution, we need to bound generalisation to be small
 - * Bound by test error $\hat{R}[f_m] = \frac{1}{m} \sum_{i=1}^m f(X_i, Y_i)$
 - * Abusing notation: $f(X_i, Y_i) = l(Y_i, f(X_i))$ $R[f_m] \leq \widehat{R}[f_m] + \varepsilon(m, \mathcal{F})$

Leslie Valiant
CCA2.0 Renate Schmid

- Unlucky training sets, no always-guarantees possible!
- With probability $\geq 1 \delta$: $R[f_m] \leq \hat{R}[f_m] + \varepsilon(m, \mathcal{F}, \delta)$
- Called Probably Approximately Correct (PAC) learning
 - * \mathcal{F} called PAC learnable if $m = O(\text{poly}(1/\varepsilon, 1/\delta))$ to learn f_m for any ε, δ
 - Won Leslie Valiant (Harvard) the 2010 Turing Award
- Later: Why this bounds estimation error.

Don't require exponential growth in training size m

Mini Summary

- Excess risk as the goal of ML
- Decomposition into approximation, estimation errors
- Probably Approximately Correct (PAC) learning
 - Like asymptotic theory in stats, but for finite sample size
 - * Worst-case on distributions: We don't want to assume something unrealistic about where the data comes from
 - * Worst-case on models: We don't want a theory that applies to narrow set of learners, but to ML in general
 - * We want it to produce a useful measure of model complexity

Next: First step to PAC theory – bounding single model risk

Bounding true risk of one function

One step at a time

We need a concentration inequality

- $\hat{R}[f]$ is an unbiased estimate of R[f] for any fixed f (why?)
- That means on average $\widehat{R}[f]$ lands on R[f]
- What's the likelihood 1δ that $\hat{R}[f]$ lands within ε of R[f]? Or more precisely, what $1 \delta(m, \varepsilon)$ achieves a given $\varepsilon > 0$?
- Intuition: Just bounding CDF of $\widehat{R}[f]$, independent of distribution!!

Hoeffding's inequality

- Many such concentration inequalities; a simplest one...
- **Theorem**: Let Z_1, \ldots, Z_m, Z be iid random variables and $h(z) \in [a, b]$ be a bounded function. For all $\varepsilon > 0$

$$\Pr\left(\left|\mathbb{E}[h(Z)] - \frac{1}{m} \sum_{i=1}^{m} h(Z_i)\right| \ge \varepsilon\right) \le 2 \exp\left(-\frac{2m\varepsilon^2}{(b-a)^2}\right)$$

$$\Pr\left(\mathbb{E}[h(Z)] - \frac{1}{m} \sum_{i=1}^{m} h(Z_i) \ge \varepsilon\right) \le \exp\left(-\frac{2m\varepsilon^2}{(b-a)^2}\right)$$

 Two-sided case in words: The probability that the empirical average is far from the expectation is small.

Et voila: A bound on true risk!

Result!
$$R[f] \le \hat{R}[f] + \sqrt{\frac{\log(1/\delta)}{2m}}$$
 with high probability (w.h.p.) $\ge 1 - \delta$

Proof

- Take the Z_i as labelled examples (X_i, Y_i)
- Take h(X,Y) = l(Y,f(X)) zero-one loss for some fixed $f \in \mathcal{F}$ then $h(X,Y) \in [0,1]$
- Apply one-sided Hoeffding: $\Pr(R[f] \hat{R}[f] \ge \varepsilon) \le \exp(-2m\varepsilon^2)$
- Then, substitute $\varepsilon = \sqrt{\frac{\log(1/\delta)}{2m}}$ into the above inequality, we have
- $\Pr\left(R[f] \widehat{R}[f] \ge \sqrt{\frac{\log(1/\delta)}{2m}}\right) \le \delta$, i.e., $\Pr\left(R[f] \widehat{R}[f] \le \sqrt{\frac{\log(1/\delta)}{2m}}\right) \ge 1 \delta$

Common probability 'tricks'

• Inversion:

- * For any event A, $Pr(\bar{A}) = 1 Pr(A)$
- * Application: $\Pr(X > \varepsilon) \le \delta$ implies $\Pr(X \le \varepsilon) \ge 1 \delta$

- Solving for, in high-probability bounds:
 - * For given ε with $\delta(\varepsilon)$ function ε : $\Pr(X > \varepsilon) \le \delta(\varepsilon)$
 - * Given δ' can write $\varepsilon = \delta^{-1}(\delta')$: $\Pr(X > \delta^{-1}(\delta')) \leq \delta'$
 - Let's you specify either parameter
 - * Sometimes sample size m a variable we can solve for too

Try to derive the bound on your own!

Mini Summary

- Goal: Bound true risk of a classifier based on its empirical risk plus "stuff"
- Caveat: Bound is "with high probability" since we could be unlucky with the data
- Approach: Hoeffding's inequality which bounds how far a mean is likely to be from an expectation

Next: PAC learning as uniform deviation bounds

Uniform deviation bounds

Why we need our bound to **simultaneously** (or uniformly) hold over a family of functions.

Our bound doesn't hold for $f = f_m$

• Result says there's set S of good samples for which $R[f] \le \widehat{R}[f] + \sqrt{\frac{\log(1/\delta)}{2m}}$ and $\Pr(\mathbf{Z} \in S) \ge 1 - \delta$

- But for different functions $f_1, f_2, ...$ we might get very different sets $S_1, S_2, ...$
- S observed may be bad for f_m . Learning minimises $\widehat{R}[f_m]$, exacerbating this

Uniform deviation bounds

- We could analyse risks of f_m from specific learner
 - * But repeating for new learners? How to compare learners?
 - * Note there are ways to do this, and data-dependently
- Bound uniform deviations across whole class ${\cal F}$

$$R[f_m] - \hat{R}[f_m] \le \sup_{f \in \mathcal{F}} (R[f] - \hat{R}[f]) \le ?$$

- Worst deviation over an entire class bounds learned risk!
- st Convenient, but could be much worse than the actual gap for f_m

 \widehat{UD}_3 Pu \widehat{UP}_2 Pu \widehat{UP}_1 pedia

Relation to estimation error?

Recall estimation error? Learning part of excess risk!

$$R[f_m] - R^* = (R[f_m] - R[f^*]) + (R[f^*] - R^*)$$

Theorem: ERM's estimation error is at most twice the uniform divergence

Proof: a bunch of algebra!

$$\begin{split} R[f_m] &\leq \left(\hat{R}[f^*] - \hat{R}[f_m] \right) + R[f_m] - R[f^*] + R[f^*] \\ &= \hat{R}[f^*] - R[f^*] + R[f_m] - \hat{R}[f_m] + R[f^*] \\ &\leq \left| R[f^*] - \hat{R}[f^*] \right| + \left| R[f_m] - \hat{R}[f_m] \right| + R[f^*] \\ &\leq 2 \sup_{f \in \mathcal{F}} \left| R[f] - \hat{R}[f] \right| + R[f^*] \end{split}$$

Mini Summary

- Why Hoeffding doesn't cover a model f_m learned from data, only a fixed data-independent f
- Uniform deviation idea: Cover the worst case deviation between risk and empirical risk, across ${\mathcal F}$
- Advantages: works for any learner, data distribution
- Connection back to bounding estimation error

Next: Next step for PAC learning – finite classes

Error bound for finite function classes

Our first uniform deviation bound

The Union Bound

- If each model f having large risk deviation is a "bad event", we need a tool to bound the probability that any bad event happens. I.e. the union of bad events!
- Union bound: for a sequence of events A_1, A_2 ...

$$\Pr\left(\bigcup_{i} A_i\right) \le \sum_{i} \Pr(A_i)$$

Proof:

Define $B_i = A_i \setminus \bigcup_{j=1}^{i-1} A_j$ with $B_1 = A_1$.

- 1. We know: $\bigcup_i B_i = \bigcup_i A_i$ (could prove by induction)
- 2. The B_i are disjoint (empty intersections)
- 3. We know: $B_i \subseteq A_i$ so $\Pr(B_i) \leq \Pr(A_i)$ by monotonicity
- 4. $\Pr(\bigcup_i A_i) = \Pr(\bigcup_i B_i) = \sum_i \Pr(B_i) \le \sum_i \Pr(A_i)$

Bound for finite classes ${\mathcal F}$

A uniform deviation bound over any finite class or distribution

Theorem: Consider any $\delta > 0$ and finite class \mathcal{F} . Then w.h.p at least $1 - \delta$: For all $f \in \mathcal{F}$, $R[f] \leq \widehat{R}[f] + \sqrt{\frac{\log |\mathcal{F}| + \log(1/\delta)}{2m}}$

Proof:

- If each model f having large risk deviation is a "bad event", we bound the probability that any bad event happens.
- $\Pr(\exists f \in \mathcal{F}, R[f] \hat{R}[f] \ge \varepsilon) \le \sum_{f \in \mathcal{F}} \Pr(R[f] \hat{R}[f] \ge \varepsilon)$
- $\leq |\mathcal{F}| \exp(-2m\varepsilon^2)$ by the union bound
- Followed by inversion, setting $\delta = |\mathcal{F}| \exp(-2m\varepsilon^2)$

Discussion

- Hoeffding's inequality only uses boundedness of the loss, not the variance of the loss random variables
 - Fancier concentration inequalities leverage variance
- Uniform deviation is worst-case, ERM on a very large overparametrised ${\mathcal F}$ may approach the worst-case, but learners generally may not
 - Custom analysis, data-dependent bounds, PAC-Bayes, etc.
- Dependent data?
 - Martingale theory
- Union bound is in general loose, as bad is if all the bad events were independent (not necessarily the case even though underlying data modelled as independent); and **finite** \mathcal{F}
 - VC theory coming up next!

Mini Summary

- More on uniform deviation bounds
- The union bound (generic tool in probability theory)
- Finite classes: Bounding uniform deviation with union+Hoeffding

Next time: PAC learning with infinite function classes!