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This lecture

* Learning from expert advice / multiplicative weights
* Learner listens to some/all experts making predictions
* True outcomes are ADVERSARIAL!
* Learner updates weights over experts based on their losses
* Algorithms all forms of “multiplicative weights”
* Nice clean bounds on total mistakes/loss: by “potential function” technique

* Infallible expert (one always perfect)
* Majority Vote Algorithm

* Imperfect experts (none guaranteed perfect) — increasingly better
* Weighted Majority Vote Algorithm by Halving
* Weighted Majority Voting by General Multiplicative Weights
* Probabilistic Experts Algorithm
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An infallible expert and the
Majority Algorithm

Warming up example
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Warm-up: Case of the infallible expert

* Experts Ey, ..., E,, predict the stock market daily

* Each expert prediction is binary: stocks will go up/down

* Learner’s game, daily: = : 7
* Observe predictions of all experts
* Make a prediction of its own
* Observe outcome (could be anything!)

* @Goal: minimise number total mistakes

* Infallible expert assumption:

* 1 or more experts makes no mistakes
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Infallible Expert Algorithm: Majority Vote

1. |Initialise set of experts who haven’t
made mistakes E = {1, ...,n}

2. Repeat per round ",A F? ',‘

a) Observe predictions E;

b) Make majority prediction B )
arg maxXyef—1,1} Yicg 1E; = y]

c) Observe correct outcome

d) Remove mistaken experts from E
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Mistake Bound for Majority Vote

(@

. . . . Intuition: Halving
Proposition: Under infallible expert assumption, (e.g. tree data

majority vote makes total mistakes M < log, n Str”Ctt“res”l? Expect
o see log

Proof

* Loop invariant: If algorithm makes a
mistake, then at least |E|/2 experts must have been wrong

* |.e. for every incorrect prediction, E reduced by at |least half. |.e.
after M mistakes, |E| < n/2M

|E| is the
potential
function

By infallibility, at all times 1 < |E]|

* Combineto 1 < |E| < n/2M, then solve for M.
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How is this “online learning”?

.rm-up: Case of the infallible ¢ T

Learning

+ Experts Ey, ..., E, predict the stock market daily
* Each expert prediction is binary: stocks will go up/dow.

* Weights on which experts are + Leamer'sgame, iy

* Observe predictions of all experts

Worth Iistening to * Make a prediction of its own

* Observe outcome (could be anything!) Fieg ‘
* Goal: minimise number total mistakes 5%

Infallible expert assumption:

* (Infallible case: 0/1 weights)
.
* Making predictions/
taking actions

* Incurring loss (so far 0/1)

* |ID “Distribution” replaced by
adversarial outcomes

Online

PREDICTION, LEARNING, AND GAMES
¢ A repeated game Nicolo Cesa-Bianchi Gabor Lugosi

http://cesa-bianchi.di.unimi.it/predbook/
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Mini Summary

* Learning with expert advice paradigm
* Abstraction of online learning problem
* Adversarial feedback
* Later: Applications abound

* Bounds on mistakes (later losses) “easy”

* Involve “potential function” technique
* Later: interested in scaling with best expert performance

Next: Imperfect experts. Down weight don’t drop bad
experts



Imperfect experts and the
Halving Algorithm

Similar proof technique; similar algorithm;
much more interesting setting
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No one’s perfect

* No more guarantee of an infallible expert

e What breaks?

* We could end up with E = @, how to predict then?
* No sense: “Zero tolerance” dropping experts on a mistake

* Very general setting / very few assumptions
* Not assuming anything about expert error rates
* Not assuming anything about correlation of expert errors

* Not assuming anything about outcome observations. Not
even stochastic (could be adversarial!)

10
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Imperfect experts: Halving Algorithm

1. Initialise w; = 1 weight of expert E;

2. Repeat per round

a) Observe predictions E;
foralli € {1, ...,n}

b) Make weighted majority prediction
arg maxye(—1,1) Lieg WillE; = Yl
c) Observe correct outcome

d) Downweigh each mistaken expert E;
w; «— w;/2
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Mistake Bound for Halving

Proposition: If the best expert makes m mistakes, then
weighted majority vote makes M < 2.4(m + log, n) mistakes.

Proof

* Invariant: If algorithm makes a mistake, then weight of wrong experts
is at least half the total weight W = 7", w;

*  Weight of wrong experts reduced by 1/2, therefore total weight
reduced by at least 3/4. l.e. after M mistakes, W < n(3/4)M

* Bestexpert E; hasw; = (1/2)™
e Combineto (1/2)"=w; < W < n(3/4)4
 Taking logs —m < log,n + Mlog,(3/4), solving M

< m+logon
— logz(4/3)
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Compare, compare: What’s going on?

* Price of imperfection (vs. infallibility) is 0(m)
+ Infallible case: M € O(logn)
* Imperfect case: M € O(m + logn)

* Scaling to many experts is no problem

* Online learning vs. PAC frameworks

- Modelling of losses Ultimate goal

. (For ERM; L6) Small estimation error
i.i.d. losses

PAC . R[fn] — RIf"]. Bounded in terms of
ol 10 8. HEREE) family’s VC dimension

Online Adversarial/arbitrary ~ Small M — m. Bounded in terms of
learning RIS number of experts.

13
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Mini Summary

* Imperfect expert setting
* Don’t drop bad experts, just halve their weight
* Predict by weighted majority, not simply majority
* Mistake bound follows similar “potential function” pattern!

* Learning with expert advice paradigm

* Key difference to PAC is adversarial feedback

* Similarity: Also concerned with performance
relative to “best in class”

Next: Imperfect experts continued. Generalising halving.

14
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From Halving to
Multiplying weights by 1 — ¢

Generalising weighted majority.

15
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Useful (but otherwise boring) inequalities

Lemma 1: For any € € [0,0.5], we have
—e—e?<log,(1—¢) < —¢

Proof:

* Upper bound by Tayler expansion, dropping all by first term (as
they’re negative)

+ Lower bound by convexity of exp(—& — &)

Lemma 2: For all € € [0,1] we have,
(1-¢)%, if x € [0,1]
1-ex> {(1 L), ifx € [=1,0]

Proof: by convexity of the RHS functions

16
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Weighted Majority Vote Algorithm

1. Initialise w; = 1 weight of expert E;

2. Repeat per round

a) Observe predictions E; - @
foralli € {1, ...,n}

b) Make weighted majority prediction
arg maxye(—1,1) Lieg WillE; = Yl
c) Observe correct outcome

d) Downweigh each mistaken expert E;
wi «— (1 = &)w;

17
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Mistake Bound

Proposition: If the best expert makes m mistakes, then (1 — &)-
weighted majority makes M < 2(1 + €¢)m + (2log,n) /e mistakes.

Bound improves dependence on m
Proof compared to halving. Why?

 Whenever learner mistakes, at least half of total weight reduced by
factor of 1 — €. So after M mistakes, W < n(1 — g/2)M

* Bestexpert E; hasw; = (1 — &)™

e Combineto (1 —&)"=w; <W <n(1-¢/2)"

* Taking logs: mlog,(1 — ¢) < log,n + Mlog,.(1 —¢/2)

* Lemma 1 replaces both log, (1 — ¢): —m(e + £2) < log,n — Me/2

* Solving for M proves the bound.

18
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Dependence in m provably near optimal!

* New to lower bounds? example shows an analysis or
even an algorithm can’t do better than some limit

* Weighted majority almost achieves 2m dependence,
with 2(1 + £)m (considering no. experts fixed)

* Example with M = 2m
* Consider n = 2 with E; (E,) correct on odd (even) days
* Then best expert makes mistakes half the time

* But after 1% round, for any &, majority vote is wrong all the time,
as incorrect expert gets more than half weight

* Consequence? Can’t improve the constant 2 factor in m

19
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Mini Summary

* Imperfect expert setting continued...

* From halving to multiplicative weights!
* Mistake bound proved as usual via “potential function” trick
* Bound’s dependence on best expert improved to 2 + & factor

* Lower bound / impossibility result

* Factor of 2 is optimal for (deterministic) multiplicative weights!

Next: Imperfect experts continued. Randomise!/!
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The probabilistic
experts algorithm

wherein randomisation helps us do better!

21
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Probabilistic experts algorithm

* Change 1 from mistakes: Loss fgt) € [0,1] of E;, round t
* Change 2: Randomised algorithm means, bounding

expected losses (sound familiar? It should.... a risk!)

1. Initialise w; = 1 weight of expert E;

2. Repeat per round

Observe predictions E;

foralli € {1, ...,n}

Predict E; of expert i with probability % where W = Y7, w;
Observe losses

()
Update each weight w; «— (1 — &)*i 'w;

22
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Probabilistic experts: Expected loss bound

* Proposition: Expected loss of the probabilistic
experts algorithm is L < 1°8¢™ 4+ (1 + ¢)L* where L

E
is the minimum loss over experts.

* Proof: next, follows similar
“potential” pattern

e Beats deterministic! Shaves off
optimal constant 2

* Generalises in many directions.
Active area of research in ML, PREDICTION, LEARNING, AND GAMES
Control’ economiCS, in top |abs. Nicolo Cesa-Bianchi Gébor Lugosi

http://cesa-bianchi.di.unimi.it/predbook/
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Proof: Upper bounding potential function

s, w®e®
W(e)

* Learner’s round t expected loss: Ly =

* By Lemma 2, since losses are [0,1]:
(t)
updated Wl-(tﬂ) «(1-¢)t i(t) < (1 — sfl@) Wl-(t)
* Rearrange to obtain recurrence relation:
n

n L w®®
W(t+1) < ( ef(t) w(t) =L
nlwg)
l

= Wl(t) (1—eLy)

* Initialisation gave W(0) = n, so telescoping we get:
T

W(T) < n l_Lzlm L)
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Proof: Lower bounding potential, Wrap up

Proved upper bound: W(T) < n[]l.;(1 —¢L,)

Lower bound from best expert total loss L*:
W(T) = (1 — ¢e)*

Combining bounds and taking Ing’s:

L*log,(1 —¢) < log.n + Z log,(1 —€L;)
t=1

By Lemmal: —L'(e+¢&?)<log,n—eXl_,L,

Linearity of expectation L = Zle L., rearranging:
L <108y (1 4+&)L

25
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Applications of multiplicative weights [Kale thesis 2007]

* Learning quantum states from noisy measurements
* Derandomising algorithms

* Solving certain
Zero-sum games

Hydrogen Wave Function

Probability density plots.
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semidefinite
programming problems
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* A basis for boosting
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* Sparse vector technique in
differential privacy
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Mini Summary

* Introducing randomisation to learning with experts
* Algorithm choosing a random expert to follow

* Weights become probabilities
* Mistakes generalise to losses

* Loss bound
* Have to bound expected loss (hey, risk!!)
* Shaves off that 2 factor. Proves that randomisation really helps!

Next: Only observe reward of chosen expert = bandits!
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