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This lecture

• Learning from expert advice / multiplicative weights
* Learner listens to some/all experts making predictions
* True outcomes are ADVERSARIAL!
* Learner updates weights over experts based on their losses
* Algorithms all forms of “multiplicative weights”
* Nice clean bounds on total mistakes/loss: by “potential function” technique

• Infallible expert (one always perfect)
* Majority Vote Algorithm

• Imperfect experts (none guaranteed perfect) – increasingly better
* Weighted Majority Vote Algorithm by Halving
* Weighted Majority Voting by General Multiplicative Weights
* Probabilistic Experts Algorithm
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An infallible expert and the 
Majority Algorithm
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Warming up example
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Warm-up: Case of the infallible expert

• Experts 𝐸!, … , 𝐸" predict the stock market daily
* Each expert prediction is binary: stocks will go up/down

• Learner’s game, daily:
* Observe predictions of all experts
* Make a prediction of its own
* Observe outcome (could be anything!)
* Goal: minimise number total mistakes

• Infallible expert assumption:
* 1 or more experts makes no mistakes
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Infallible Expert Algorithm: Majority Vote

1. Initialise set of experts who haven’t 
made mistakes 𝐸 = 1,… , 𝑛

2. Repeat per round
a) Observe predictions 𝐸!

for all 𝑖 ∈ 1,… , 𝑛
b) Make majority prediction 

argmax"∈ $%,% ∑!∈' 1 𝐸! = 𝑦
c) Observe correct outcome
d) Remove mistaken experts from 𝐸
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Mistake Bound for Majority Vote

Proposition: Under infallible expert assumption, 
majority vote makes total mistakes 𝑀 ≤ log( 𝑛

Proof

• Loop invariant: If algorithm makes a
mistake, then at least 𝐸 /2 experts must have been wrong

• I.e. for every incorrect prediction, 𝐸 reduced by at least half. I.e. 
after 𝑀 mistakes, 𝐸 ≤ 𝑛/2)

• By infallibility, at all times 1 ≤ 𝐸

• Combine to 1 ≤ 𝐸 ≤ 𝑛/2), then solve for 𝑀.
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Intuition: Halving 
(e.g. tree data 

structures!)? Expect 
to see log

𝑬 is the 
potential
function
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How is this “online learning”?

Learning

• Weights on which experts are 
worth listening to

• (Infallible case: 0/1 weights)

• Making predictions/
taking actions

• Incurring loss (so far 0/1)

• IID “Distribution” replaced by 
adversarial outcomes

Online

• A repeated game
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Mini Summary

• Learning with expert advice paradigm
* Abstraction of online learning problem
* Adversarial feedback
* Later: Applications abound

• Bounds on mistakes (later losses) “easy”
* Involve “potential function” technique
* Later: interested in scaling with best expert performance

Next: Imperfect experts. Down weight don’t drop bad 
experts
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Imperfect experts and the 
Halving Algorithm
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Similar proof technique; similar algorithm; 
much more interesting setting
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No one’s perfect

• No more guarantee of an infallible expert

• What breaks?
* We could end up with 𝐸 = ∅, how to predict then?
* No sense: “Zero tolerance” dropping experts on a mistake

• Very general setting / very few assumptions
* Not assuming anything about expert error rates
* Not assuming anything about correlation of expert errors
* Not assuming anything about outcome observations. Not 

even stochastic (could be adversarial!)
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Imperfect experts: Halving Algorithm

1. Initialise 𝑤$ = 1 weight of expert 𝐸$
2. Repeat per round

a) Observe predictions 𝐸!
for all 𝑖 ∈ 1,… , 𝑛

b) Make weighted majority prediction 
argmax"∈ $%,% ∑!∈'𝑤!1 𝐸! = 𝑦

c) Observe correct outcome
d) Downweigh each mistaken expert 𝐸!

𝑤! ⟵𝑤!/2
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Mistake Bound for Halving

Proposition: If the best expert makes 𝑚 mistakes, then
weighted majority vote makes 𝑀 ≤ 2.4 𝑚 + log( 𝑛 mistakes.

Proof
• Invariant: If algorithm makes a mistake, then weight of wrong experts 

is at least half the total weight W = ∑!"#$ 𝑤!
• Weight of wrong experts reduced by 1/2, therefore total weight 

reduced by at least 3/4. I.e. after 𝑀 mistakes, 𝑊 ≤ 𝑛 3/4 %

• Best expert 𝐸! has 𝑤! = (1/2)&

• Combine to (1/2)&= 𝑤! ≤ 𝑊 ≤ 𝑛 3/4 %

• Taking logs −𝑚 ≤ log'𝑛 +𝑀log' 3/4 , solving 𝑀 ≤ !"#$%&'
#$%& (/*
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Compare, compare: What’s going on?
• Price of imperfection (vs. infallibility) is 𝒪 𝑚

* Infallible case: 𝑀 ∈ 𝒪 log 𝑛
* Imperfect case: 𝑀 ∈ 𝒪 𝑚 + log 𝑛

• Scaling to many experts is no problem

• Online learning vs. PAC frameworks
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Modelling of losses Ultimate goal

PAC i.i.d. losses
(due to e.g. Hoeffding)

(For ERM; L6) Small estimation error 
𝑅 𝑓! − 𝑅 𝑓∗ . Bounded in terms of 
family’s VC dimension

Online 
learning

Adversarial/arbitrary 
losses

Small 𝑀 −𝑚. Bounded in terms of 
number of experts.
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Mini Summary

• Imperfect expert setting
* Don’t drop bad experts, just halve their weight
* Predict by weighted majority, not simply majority
* Mistake bound follows similar “potential function” pattern!

• Learning with expert advice paradigm
* Key difference to PAC is adversarial feedback
* Similarity: Also concerned with performance 

relative to “best in class”

Next: Imperfect experts continued. Generalising halving.
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From Halving to 
Multiplying weights by 1 − 𝜀
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Generalising weighted majority.
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Useful (but otherwise boring) inequalities

• Lemma 1: For any 𝜀 ∈ 0,0.5 , we have
−𝜀 − 𝜀! ≤ log" 1 − 𝜀 < −𝜀

• Proof:
* Upper bound by Tayler expansion, dropping all by first term (as 

they’re negative)
* Lower bound by convexity of exp(−𝜀 − 𝜀')

• Lemma 2: For all 𝜀 ∈ [0,1] we have,

1 − 𝜀𝑥 > 2
(1 − 𝜀)# , if 𝑥 ∈ [0,1]
(1 + 𝜀)$# , if 𝑥 ∈ [−1,0]

• Proof: by convexity of the RHS functions
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Weighted Majority Vote Algorithm

1. Initialise 𝑤$ = 1 weight of expert 𝐸$
2. Repeat per round

a) Observe predictions 𝐸!
for all 𝑖 ∈ 1,… , 𝑛

b) Make weighted majority prediction 
argmax"∈ $%,% ∑!∈'𝑤!1 𝐸! = 𝑦

c) Observe correct outcome
d) Downweigh each mistaken expert 𝐸!

𝑤! ⟵ (1 − 𝜀)𝑤!
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1 − 𝜀 1 − 𝜀
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Mistake Bound

Proposition: If the best expert makes 𝑚 mistakes, then 1 − 𝜀 -
weighted majority makes 𝑀 ≤ 2 1 + 𝜀 𝑚 + (2log-𝑛)/𝜀 mistakes.

Proof
• Whenever learner mistakes, at least half of total weight reduced by 

factor of 1 − 𝜀 . So after 𝑀 mistakes, 𝑊 ≤ 𝑛 1 − 𝜀/2 %

• Best expert 𝐸! has 𝑤! = (1 − 𝜀)&

• Combine to (1 − 𝜀)&= 𝑤! ≤ 𝑊 ≤ 𝑛 1 − 𝜀/2 %

• Taking logs:  𝑚log((1 − 𝜀) ≤ log(𝑛 +𝑀log( 1 − 𝜀/2

• Lemma 1 replaces both log((1 − 𝜀):  −m ε + 𝜀' ≤ log(𝑛 −𝑀𝜀/2
• Solving for 𝑀 proves the bound.

Bound improves dependence on m
compared to halving. Why?



COMP90051 Statistical Machine Learning

Dependence in 𝑚 provably near optimal!

• New to lower bounds? example shows an analysis or 
even an algorithm can’t do better than some limit

• Weighted majority almost achieves 2𝑚 dependence, 
with 2 1 + 𝜀 𝑚 (considering no. experts fixed)

• Example with 𝑀 = 2𝑚
* Consider 𝑛 = 2 with 𝐸# (𝐸') correct on odd (even) days
* Then best expert makes mistakes half the time
* But after 1st round, for any 𝜀, majority vote is wrong all the time, 

as incorrect expert gets more than half weight

• Consequence? Can’t improve the constant 2 factor in 𝑚
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Mini Summary

• Imperfect expert setting continued…

• From halving to multiplicative weights!
* Mistake bound proved as usual via “potential function” trick
* Bound’s dependence on best expert improved to 2 + 𝜀 factor

• Lower bound / impossibility result
* Factor of 2 is optimal for (deterministic) multiplicative weights!

Next: Imperfect experts continued. Randomise!!
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The probabilistic 
experts algorithm

21

wherein randomisation helps us do better!
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Probabilistic experts algorithm

• Change 1 from mistakes: Loss ℓ%
(') ∈ [0,1] of 𝐸%, round 𝑡

• Change 2: Randomised algorithm means, bounding 
expected losses (sound familiar? It should…. a risk!)

1. Initialise 𝑤% = 1 weight of expert 𝐸%
2. Repeat per round

a) Observe predictions 𝐸!
for all 𝑖 ∈ 1,… , 𝑛

b) Predict 𝐸! of expert 𝑖 with probability +,- where 𝑊 = ∑!"#$ 𝑤!
c) Observe losses

d) Update each weight 𝑤! ⟵ (1 − 𝜀)ℓ,
(/)
𝑤!
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Probabilistic experts: Expected loss bound

• Proposition: Expected loss of the probabilistic 
experts algorithm is 𝐿 ≤ !"#$%

& + (1 + 𝜀)𝐿∗ where 𝐿∗
is the minimum loss over experts.

• Proof: next, follows similar 
“potential” pattern

• Beats deterministic! Shaves off 
optimal constant 2

• Generalises in many directions. 
Active area of research in ML, 
control, economics, in top labs.

23
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Proof: Upper bounding potential function

• Learner’s round 𝑡 expected loss: 𝐿. =
∑!"#
$ 0!

(&)ℓ!
(&)

2(.)

• By Lemma 2, since losses are [0,1]: 
updated 𝑤!

(.5%) ← (1 − 𝜀)ℓ!
(&)
𝑤!
(.) ≤ 1 − 𝜀ℓ!

(.) 𝑤!
(.)

• Rearrange to obtain recurrence relation:

W t + 1 ≤G
!6%

7

1 − 𝜀ℓ!
. 𝑤!

(.) =G
!6%

7

𝑤!
(.) 1 − 𝜀

∑!6%7 𝑤!
(.)ℓ!

.

∑!6%7 𝑤!
(.)

= W(𝑡) 1 − 𝜀𝐿.

• Initialisation gave W 0 = 𝑛, so telescoping we get:

W T ≤ 𝑛J
.6%

8
1 − 𝜀𝐿.
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Proof: Lower bounding potential, Wrap up

• Proved upper bound:  W T ≤ 𝑛∏')*
+ 1 − 𝜀𝐿'

• Lower bound from best expert total loss 𝐿∗:
W(𝑇) ≥ (1 − 𝜀)-∗

• Combining bounds and taking log’s:

𝐿∗log" 1 − 𝜀 ≤ log"𝑛 +G
')*

+

log" 1 − 𝜀𝐿'

• By Lemma 1:    −𝐿∗ 𝜀 + 𝜀! ≤ log"𝑛 − 𝜀 ∑')*+ 𝐿'
• Linearity of expectation 𝐿 = ∑')*+ 𝐿', rearranging:

𝐿 ≤ ./0+1
2 + (1 + 𝜀)𝐿∗
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Applications of multiplicative weights [Kale thesis 2007]

• Learning quantum states from noisy measurements

• Derandomising algorithms

• Solving certain 
zero-sum games

• Fast graph partitioning

• Fast solving of 
semidefinite 
programming problems

• Portfolio optimisation

• A basis for boosting

• Sparse vector technique in 
differential privacy

26
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Mini Summary

• Introducing randomisation to learning with experts
* Algorithm choosing a random expert to follow
* Weights become probabilities
* Mistakes generalise to losses

• Loss bound
* Have to bound expected loss (hey, risk!!)
* Shaves off that 2 factor. Proves that randomisation really helps!

Next: Only observe reward of chosen expert à bandits!
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