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This lecture

• Support vector machines (SVMs) as maximum-
margin classifiers

• The hard-margin SVM objective

• SVM objective as regularised loss function

• The soft-margin SVM
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Maximum-Margin 
Classifier: Motivation

A new twist to binary linear classification.
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Beginning: linear SVMs

• In the first part, we will consider a basic setup of 
SVMs, something called linear hard-margin SVM. 

• Keep in mind: SVMs are more powerful than they 
initially appear

• For now, we model the data as linearly separable, 
i.e., there exists a hyperplane perfectly separating 
the classes
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SVM is a linear binary classifier
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Predict class A if 𝑠 ≥ 0
Predict class B if 𝑠 < 0
where 𝑠 = 𝑏 + ∑!"#$ 𝑥!𝑤!

SVM is a linear classifier: 𝑠 is a 
linear function of inputs, and the 
separating boundary is linear
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Choosing separation boundary

• An SVM is a linear binary classifier: choosing parameters 
means choosing a separating boundary (hyperplane)

• In 2D:
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𝑥!

𝑥"

C

B
A Which boundary would you 

choose?

A (Green)
B (Purple)
C (Orange)
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Which boundary should we use?

• Provided the dataset is linearly separable, classifiers like logistic 
regression, naïve Bayes will find boundaries that separate classes 
perfectly. Many such boundaries exist (infinite!)
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𝑥!

𝑥"
B

A If defining loss as 0-1 
mistakes, A and B are 
equally good.
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Which boundary should we use?

• Provided the dataset is linearly separable, classifiers like logistic 
regression, naïve Bayes will find boundaries that separate classes 
perfectly. Many such boundaries exist (infinite!)
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𝑥!

𝑥"
B

A But... line A seems more 
reliable. When new data 
point arrives, line B is likely 
to misclassify it
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Aiming for the safest boundary
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𝑥!

𝑥"

• Intuitively, the most reliable boundary would be the one that 
is between the classes and as far away from both classes as 
possible

SVM objective captures this 
observation

SVMs aim to find the 
separation boundary that 
maximises the margin
between the classes
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Maximum-margin classifier

• An SVM is a linear binary classifier. SVM training aims to 
find the separating boundary that maximises margin

• For this reason, SVMs a.k.a maximum-margin classifiers

• The training data is fixed, so the margin is defined by the 
location and orientation of the separating boundary 

• Our next step is to formalise our objective by expressing 
margin width as a function of parameters (and data)
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Mini Summary

• Many linear classifiers seem equally good for linearly 
separable data if you just care about training error

• Max-margin classifier is far from data and therefore 
robust against training data sampling effects

Next: Deriving the max-margin objective
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Maximum-Margin 
Classifier: Derivation

A geometric derivation of
the (hard-margin) SVM’s objective
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Margin width
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𝑥!

𝑥"

• While the margin can be thought as the space between two dashed 
lines, it is more convenient to define margin width as the distance 
between the separating boundary and the nearest data point(s)

Point(s) on margin boundaries 
called support vectors

We want to maximise the 
distance to support vectors
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𝒓

Distance from point to hyperplane
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𝑥!

𝑥"

• Consider an arbitrary point 𝒙 (from either of the classes, and not 
necessarily the closest one to the boundary), and let 𝒙# denote the 
projection of 𝒙 onto the separating boundary

• Now, let 𝒓 be a vector 𝒙# − 𝒙. Note that 𝒓 is perpendicular to the 
boundary, and also that 𝒓 is the required distance

The separation boundary is defined 
by parameters 𝒘 and 𝑏. 

From our linear algebra slides, recall 
that 𝒘 is a vector normal 
(perpendicular) to the boundary

In the figure, 𝒘 is drawn from an 
arbitrary starting point on boundary

𝒘
𝒙

𝒙#

0
Remember that 𝒘 = 𝑤!" +⋯+𝑤#"
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Distance from point to hyperplane
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𝑥!

𝑥"

• Distance is 𝒓 = −𝒘!𝒙&'
𝒘

, or more generally 𝒓 = ±𝒘!𝒙&'
𝒘

𝒓

0

𝒘
𝒙

𝒙#= 𝒙 + 𝒓 𝒘
𝒘

because 𝒘 ∥ 𝒓.

𝒙# is on the decision boundary, so we know 𝟎 = 𝒘′𝒙" + 𝑏.
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Distance from point to hyperplane
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𝑥!

𝑥"

• Distance is 𝒓 = −𝒘!𝒙&'
𝒘

, or more generally 𝒓 = ±𝒘!𝒙&'
𝒘

𝒓

0

𝒘
𝒙

𝒙#

𝒙" = 𝒙 + 𝒓
𝒘
𝒘 ,

𝟎 = 𝒘′𝒙" + 𝑏 𝟎 = 𝒘′ 𝒙 + 𝒓 𝒘
𝒘

+ 𝑏

= 𝒘′𝒙 + 𝒓 𝒘#𝒘
𝒘
+ 𝑏

= 𝒘′𝒙 + 𝒓 𝒘 𝟐

𝒘
+ 𝑏

= 𝒘′𝒙 + 𝒓 𝒘 + 𝑏 𝒓 = −
𝒘#𝒙 + 𝑏

𝒘 .

If 𝒙 is on the right side of the green line,

then 𝒓 = 𝒘"𝒙%&
𝒘

.
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Encoding the side using labels
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• Training data is a collection {𝒙!, 𝑦!}, 𝑖 = 1,… , 𝑛,  where each 
𝒙! is an 𝑚-dimensional instance and 𝑦! is the corresponding 
binary label encoded as −1 or 1

• Given a perfect separation boundary, 𝑦! will encode the side 
of the boundary each 𝒙! is on

• Thus the distance from the 𝑖-th point to a perfect boundary 
can be encoded as

𝒓! =
𝑦! 𝒘1𝒙! + 𝑏

𝒘
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Maximum margin objective
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• The distance from the 𝑖-th point to a perfect boundary can be 

encoded as 𝒓! = 2& 𝒘'𝒙&34
𝒘

• The margin width is the distance to the closest point

• Thus SVMs aim to maximise min
!"#,…,6

2& 𝒘'𝒙&34
𝒘

as a function of 𝒘 and 𝑏

art: OpenClipartVectors at 
pixabay.com (CC0)

Do you see any problems 
with this objective?
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Non-unique representation
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• A separating boundary (e.g., a line in 2D) is a set of points that 
satisfy 𝒘1𝒙 + 𝑏 = 0 for some given 𝒘 and b

• However, the same set of points will also satisfy ;𝒘1𝒙 + <𝑏 = 0, 
with ;𝒘 = 𝛼𝒘 and <𝑏 = 𝛼𝑏, where 𝛼 > 0 is arbitrary

The same boundary, and 
essentially the same 
classifier can be expressed 
with infinitely many 
parameter combinations
– that diverge!

𝑥!

𝑥"
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Constraining the objective for uniqueness
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• SVMs aim to maximise min
()!,…,,

-" 𝒘!𝒙"&'
𝒘

• Introduce (arbitrary) extra requirement 2&∗ 𝒘
'𝒙&∗34
𝒘 = #

𝒘
* 𝑖∗ denotes index of a closest example to boundary

• Instead of maximising margin, can minimise norm of w

• Ensure classifier makes no errors: constrain 𝑦! 𝒘1𝒙! + 𝑏 ≥ 1
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Hard-margin SVM objective
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We now have a major result: SVMs aim to find
argmin
𝒘,4

𝒘

s.t. 𝑦! 𝒘1𝒙! + 𝑏 ≥ 1 for 𝑖 = 1,… , 𝑛

𝑥!

𝑥" Note 1: parameter 𝑏 is 
optimised indirectly by 
influencing constraints

Note 2: all points are enforced 
to be on or outside the margin

Therefore, this version of SVM 
is called hard-margin SVM

1
𝒘 1

𝒘
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Mini Summary

• Derived expression for margin, towards formulating 
an objective to optimise for training an SVM

• Chose a “canonical scale” to ensure uniqueness

• Converted max margin to min norm of w

• Constraints needed to ensure perfect accuracy

Next: SVM objective as regularised loss
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SVM Objective as 
Regularised Loss

Relating the resulting objective function to 
that of other machine learning methods

23
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Previously in COMP90051 …

1. Choose/design a model

2. Choose/design loss function

3. Find parameter values that 
minimise discrepancy on
training data

24

How do SVMs fit 
this pattern?
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SVM as Regularised ERM
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• Recall ridge regression objective

minimise ∑!"#$ 𝑦! −𝒘%𝒙! & + 𝜆 𝒘 &

• Hard margin      SVM objective
argmin
𝒘,)

𝒘

s.t. 𝑦! 𝒘%𝒙! + 𝑏 ≥ 1 for 𝑖 = 1,… , 𝑛

• The constraints can be interpreted as loss

𝑙* = 70 1 − 𝑦! 𝒘%𝒙! + 𝑏 ≤ 0
∞ 1 − 𝑦! 𝒘%𝒙! + 𝑏 > 0

data-dependent 
training error

data-independent 
regularisation term
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Hard margin SVM loss
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• The constraints can be interpreted as loss

𝑙/ = #0 1 − 𝑦0 𝒘1𝒙0 + 𝑏 ≤ 0
∞ 1 − 𝑦0 𝒘1𝒙0 + 𝑏 > 0

• In other words, for each point:
* If it’s on the right side of the boundary and at least #

𝒘
units away from the boundary, we’re OK, the loss is 0

* If the point is on the wrong side, or too close to the 
boundary, we immediately give infinite loss thus 
prohibiting such a solution altogether
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Mini Summary

• Very helpful to view hard-margin SVM as minimising 
regularised loss
* Connects this topic to rest of COMP90051
* Prepares us for more important soft-margin SVM

• Regularisation: Objective function w norm

• Loss: Found in the constraints

Next: Soft-margin SVM

27
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Soft-Margin SVMs 

Addressing linear inseparability

28



COMP90051 Statistical Machine Learning

When data is not linearly separable

29

• Hard-margin loss is too stringent (hard!)
• Real data is unlikely to be linearly separable
• If the data is not separable, hard-margin SVMs are in trouble

𝑥!

𝑥" ?
SVMs offer 3 approaches 
to address this problem:
1. Still use hard-margin 

SVM, but transform
the data (next lecture)

2. Relax the constraints 
(next slide)

3. The combination of 1 
and 2 J
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Soft-margin SVM

30

• Relax constraints to allow points to be inside the margin
or even on the wrong side of the boundary

𝑥!

𝑥"

However, we penalise 
boundaries by the extent 
of “violation”

In the figure, the 
objective penalty will 
take into account the 
orange distances
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Hinge loss: soft-margin SVM loss
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• Hard-margin SVM loss

𝑙/ = #0 1 − 𝑦 𝒘1𝒙 + 𝑏 ≤ 0
∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• Soft-margin SVM loss (hinge loss)

𝑙2 = # 0 1 − 𝑦 𝒘1𝒙 + 𝑏 ≤ 0
1 − 𝑦 𝒘1𝒙 + 𝑏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑙'( 9𝑦, 𝑦)

𝑠

0 1

𝑠 = 𝑦 9𝑦

B𝑦
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Soft-margin SVM objective
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• Soft-margin SVM objective

argmin
𝒘,4

=
056

7

𝑙2 𝒙0 , 𝑦0 , 𝒘, 𝑏 + 𝜆 𝒘 8

* Reminiscent of ridge regression
* Hinge loss  𝑙? = max 0,1 − 𝑦! 𝒘1𝒙! + 𝑏

• We are going to re-formulate this objective to make 
it more amenable to analysis
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Re-formulating soft-margin objective
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• Introduce slack variables as an upper bound on loss
𝜉0 ≥ 𝑙2 = max 0,1 − 𝑦0 𝒘1𝒙0 + 𝑏

or equivalently 𝜉0 ≥ 1 − 𝑦0 𝒘1𝒙0 + 𝑏 and 𝜉0 ≥ 0

• Re-write the soft-margin SVM objective as:

argmin
𝒘,4,𝝃

1
2
𝒘 8 + 𝐶=

056

7

𝜉0

s.t. 𝜉0 ≥ 1 − 𝑦0 𝒘1𝒙0 + 𝑏 for 𝑖 = 1,… , 𝑛

𝜉0 ≥ 0 for 𝑖 = 1,… , 𝑛
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Side-by-side: Two variations of SVM
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• Hard-margin SVM objective*:

argmin
𝒘,#

1
2
𝒘 $

s.t. 𝑦% 𝒘&𝒙% + 𝑏 ≥ 1 for 𝑖 = 1,… , 𝑛

• Soft-margin SVM objective:

argmin
𝒘,#,𝝃

1
2 𝒘 $ + 𝐶5

%()

*

𝜉%

s.t. 𝑦% 𝒘&𝒙% + 𝑏 ≥ 1 − 𝜉% for 𝑖 = 1,… , 𝑛

𝜉% ≥ 0 for 𝑖 = 1,… , 𝑛

• In the second case, the constraints are relaxed (“softened”) by 
allowing violations by 𝜉%. Hence the name “soft margin”

*Changed 𝒘 to 0.5 𝒘 " - monotonic increasing transform. Modified objective yields same solution.
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Mini Summary

• Support vector machines (SVMs) as maximum 
margin classifiers

• Deriving hard margin SVM objective

• SVM as regularised ERM

• Soft-margin SVM

Next time: Kernel methods
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