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This lecture

• (Directed) probabilistic graphical models
* Motivations: applications, unifies algorithms
* Motivation: ideal tool for Bayesians
* Independence lowers computational/model complexity

• Conditional independence

* PGMs: compact representation of factorised joints

• Undirected PGMs and conversion from D-PGMs

• Example PGMs, applications
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Probabilistic Graphical Models

Marriage of graph theory and probability theory. 
Tool of choice for Bayesian statistical learning.
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We’ll stick with easier discrete case,
ideas generalise to continuous.
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Motivation by practical importance

• Many applications
* Phylogenetic trees
* Pedigrees, Linkage analysis
* Error-control codes
* Speech recognition
* Document topic models
* Probabilistic parsing
* Image segmentation
* …

• discovered algorithms
* HMMs
* Kalman filters
* Mixture models
* LDA
* MRFs
* CRF
* Logistic, linear regression
* … 4
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Motivation by way of comparison

Bayesian statistical learning

• Model joint distribution of
X’s,Y and parameter r.v.’s
* “Priors”: marginals on 

parameters

• Training: update prior to 
posterior using observed data

• Prediction: output posterior, 
or some function of it (MAP)

PGMs aka “Bayes Nets”

• Efficient joint representation
* Independence made explicit
* Trade-off between 

expressiveness and need for
data, easy to make

* Easy for practitioners to model

• Algorithms to fit parameters, 
compute marginals, posterior
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Everything Starts at the Joint Distribution

• All joint distributions on discrete 
r.v.’s can be represented as tables

• #rows grows exponentially with 
#r.v.’s

• Example: Truth Tables
* M Boolean r.v.’s require 2M-1 rows
* Table assigns probability per row

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 ?

A B

C

0.05 0.1

0.05

0.1

0.25

0.050.1
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The Good: What we can do with the joint

• Probabilistic inference from joint on r.v.’s
* Computing any other distributions involving our r.v.’s

• Pattern: want a distribution, have joint; use:
Bayes rule + marginalisation

• Example: naïve Bayes classifier
* Predict class 𝑦 of instance 𝒙 by maximising

Pr 𝑌 = 𝑦|𝑿 = 𝒙 = !" #$%,𝑿$𝒙
!"(𝑿$𝒙)

= !" #$%,𝑿$𝒙
∑! !" 𝑿$𝒙,#$%

Recall: integration (over parameters) continuous equivalent of sum (both 
referred to as marginalisation)
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The Bad & Ugly: Tables waaaaay too large!!
• The Bad: Computational complexity

* Tables have exponential number of rows in number of r.v.’s
* Therefore à poor space & time to marginalise

• The Ugly: Model complexity
* Way too flexible
* Way too many parameters to fit
à need lots of data OR will overfit

• Antidote: assume independence!

8

A B C Prob

0 0 0 0.30

0 0 1 0.05

0 1 0 0.10

0 1 1 0.05

1 0 0 0.05

1 0 1 0.10

1 1 0 0.25

1 1 1 ?

Grace Liu
independence will reduce the size of table
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Example: You’re late!

• Modeling a tardy lecturer. Boolean r.v.’s
* T: Ben teaches the class
* S: It is sunny (o.w. bad weather)
* L: The lecturer arrives late (o.w. on time)

• Assume: Ben sometimes delayed by bad weather, Ben more 
likely late than other lecturers
* Pr 𝑆|𝑇 = Pr 𝑆 , Pr 𝑆 = 0.3, Pr 𝑇 = 0.6

• Lateness not independent on weather,
lecturer
* Need Pr 𝐿|𝑇 = 𝑡, 𝑆 = 𝑠 for all combinations

• Need just 6 parameters
9

Pr 𝐿 = 𝑡𝑟𝑢𝑒|…
T

False True

S
False 0.1 0.2

True 0.05 0.1
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Independence: not a dirty word

• Independence assumptions
* Can be reasonable in light of domain expertise
* Allow us to factor à Key to tractable models

10

Lazy Lecturer Model Model details # params

Our model with 𝑆, 𝑇 independence
Pr 𝑆, 𝑇 factors to Pr 𝑆 Pr 𝑇 2

Pr 𝐿|𝑇, 𝑆 modelled in full 4

Assumption-free model Pr 𝐿, 𝑇, 𝑆 modelled in full 7

Grace Liu
based on the independence assumption, we can reduce the large table to smaller tables ( 7 -> 2 1-row table, + 1 4-row table
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Factoring Joint Distributions

• Chain Rule: for any ordering of r.v.’s can always factor:

Pr 𝑋(, 𝑋), … , 𝑋* =)
+,(

*
Pr 𝑋+|𝑋+-(, … , 𝑋*

• Model’s independence assumptions correspond to
– Dropping conditioning r.v.’s in the factors!
– Example unconditional indep.: Pr 𝑋!|𝑋" = Pr 𝑋!
– Example conditional indep.: Pr 𝑋!|𝑋", 𝑋# = Pr 𝑋!|𝑋"

• Example: independent r.v.’s Pr 𝑋3, … , 𝑋4 = ∏563
4 Pr 𝑋5

• Simpler factors: speed up inference and avoid overfitting
11

Grace Liu
2^k - 1 -> k
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Mini Summary

• Joint distributions

• Probabilistic inference: Bayes rule & marginalisation

• Direct representation of joints
* Probabilistic inference: Computationally costly
* Statistical inference: Requires more data

• Factoring joints and conditional independence

Next: Directed probabilistic graphical models
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Directed PGM
• Nodes

• Edges (acyclic)

• Random variables

• Conditional dependence
* Node table: Pr 𝑐ℎ𝑖𝑙𝑑|𝑝𝑎𝑟𝑒𝑛𝑡𝑠
* Child directly depends on 

parents

• Joint factorisation
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S T

L

Pr 𝑆 Pr 𝑇

Pr 𝐿|𝑆, 𝑇

Pr 𝑋!, 𝑋", … , 𝑋# = ∏$%!
# Pr 𝑋$|𝑋& ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋$)

Tardy Lecturer Example

Grace Liu
S and T are indept

Grace LIu

Grace Liu
From the chain rule

Grace Liu
given its parents

Grace LIu
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Example: Nuclear power plant

• Core temperature
à Temperature Gauge
à Alarm

• Model uncertainty in 
monitoring failure
* GRL: gauge reads low
* CTL: core temperature low
* FG: faulty gauge
* FA: faulty alarm
* AS: alarm sounds

• PGMs to the rescue!
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CTL FG

GRLFA

AS

Pr(𝐶𝑇𝐿) Pr(𝐹𝐺)

Pr(𝐹𝐴) Pr 𝐺𝑅𝐿 𝐶𝑇𝐿, 𝐹𝐺)

Pr 𝐴𝑆 𝐺𝑅𝐿, 𝐹𝐴)

Joint   Pr(𝐶𝑇𝐿, 𝐹𝐺, 𝐹𝐴, 𝐺𝑅𝐿, 𝐴𝑆) given by

Pr(𝐴𝑆|𝐹𝐴, 𝐺𝑅𝐿) Pr(𝐹𝐴) Pr(𝐺𝑅𝐿|𝐶𝑇𝐿, 𝐹𝐺) Pr(𝐶𝑇𝐿) Pr(𝐹𝐺)
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Naïve Bayes
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Y

X1 Xd…

𝑌 ~ Bernoulli 𝜃

𝑋&|𝑌 ~ Bernoulli 𝜃&,(

Pr 𝑌, 𝑋,, … , 𝑋-
= Pr 𝑋,, … , 𝑋-, 𝑌
= Pr 𝑋,|𝑌 Pr 𝑋.|𝑋,, 𝑌 …Pr 𝑋-|𝑋,, … , 𝑋-/,, 𝑌 Pr 𝑌
= Pr 𝑋,|𝑌 Pr 𝑋.|𝑌 …Pr 𝑋-|𝑌 Pr 𝑌

Prediction: predict label maximising Pr 𝑌|𝑋,, … , 𝑋-

Aside: Bernoulli is just 
Binomial with count=1
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Short-hand for repeats: Plate notation

16

Y

X1 Xd…

Y

Xi

=

i=1..d

X1 Xd… Xi=
i=1..d
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PGMs: frequentist OR Bayesian…

• PGMs represent joints, which are central to Bayes

• Catch is that Bayesians add: node per parameters, 
with table being the parameter’s prior

17

Y

X1 Xd…

𝑌 ~ Bernoulli 𝜃

𝑋&|𝑌 ~ Bernoulli 𝜃&,(

𝜃

𝜃,,0 𝜃,,, 𝜃-,0 𝜃-,,

𝜃)𝑠 ~ 𝐵𝑒𝑡𝑎
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Mini Summary

Directed probabilistic graphical models (D-PGMs)

• Definition as graph and conditionals

• Definition as joint distribution factorisation

• Plate notation

• Bayesian D-PGMs

Next: Undirected probabilistic graphical models

18
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Undirected PGMs

Undirected variant of PGM, parameterised by 
arbitrary positive valued functions of the variables, 

and global normalisation.
A.k.a. Markov Random Field.

19
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Undirected vs directed

Undirected PGM

• Graph
* Edges undirected

• Probability
* Each node a r.v.
* Each clique C has “factor” 

ψG 𝑋H: 𝑗 ∈ 𝐶 ≥ 0
* Joint ∝ product of factors

Directed PGM

• Graph
* Edged directed

• Probability
* Each node a r.v.
* Each node has conditional 
𝑝 𝑋+|𝑋H ∈ 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋+)

* Joint = product of cond’ls

20

Key difference = normalisation

Grace Liu
Key Difference from Directed PGM: The normalization process. In undirected PGMs, the joint distribution is determined by the product of factors, but it needs to be normalized to ensure it sums to 1 over all possible states.

Grace LIu
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Undirected PGM formulation

• Based on notion of 
* Clique: a set of fully connected 

nodes (e.g., A-D, C-D, C-D-F)
* Maximal clique: largest cliques in 

graph (not C-D, due to C-D-F)

• Joint probability defined as

* where each ψ is a positive function and Z is the 
normalising ‘partition’ function

21

A E

DB

C

F

P (a, b, c, d, e, f) =
1

Z
 1(a, b) 2(b, c) 3(a, d) 4(d, c, f) 5(d, e)

Z =
X

a,b,c,d,e,f

 1(a, b) 2(b, c) 3(a, d) 4(d, c, f) 5(d, e)

Grace Liu
ABCD is not a MC, because it is even not a click!
AC and BD are not connected to each other.
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Directed to undirected 

• Directed PGM formulated as

where 𝛑 indexes parents. 

• Equivalent to U-PGM with
* each conditional probability term is included in one factor 

function, ψc

* clique structure links groups of variables, i.e.,
* normalisation term trivial, Z = 1

22

{{Xi} [X⇡i , 8i}

P (X1, X2, . . . , Xk) =
kY

i=1

Pr(Xi|X⇡i)
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1. copy nodes

2. copy edges, undirected

3. ‘moralise’ parent nodes

23

CTL FG

GRLFA

AS

CTL FG

GRLFA

AS

Grace LIu

Grace Liu
Because we don not know any conditional prob of AS
we need to connect it’s parents (to show the relationship between all nodes)



COMP90051 Statistical Machine Learning

Why U-PGM?

• Pros
* generalisation of D-PGM
* simpler means of modelling without the need for per-

factor normalisation
* general inference algorithms use U-PGM representation 

(supporting both types of PGM)

• Cons
* (slightly) weaker independence
* calculating global normalisation term (Z) intractable in 

general (but tractable for chains/trees, e.g., CRFs)

24

Grace Liu
Any D-PGM can be converted to an equivalent U-PGM through the process of moralization.



COMP90051 Statistical Machine Learning

Mini Summary

Undirected probabilistic graphical models (U-PGMs)

• Definition

• Conversion to D-PGMs

• Pros/Cons over D-PGMs

Next: Examples and applications of PGMs

25
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Example PGMs

The hidden Markov model (HMM); 
lattice Markov random field (MRF);

Conditional random field (CRF)

26
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The HMM (and Kalman Filter)

• Sequential observed outputs from hidden state

• The Kalman filter same with continuous Gaussian r.v.’s

• A CRF is the 
undirected analogue

27𝑞* 𝑞+𝑞"𝑞!

𝑜* 𝑜+𝑜"𝑜!
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HMM Applications

• NLP – part of speech tagging: given words in sentence, 
infer hidden parts of speech

“I love Machine Learning” à noun, verb, noun, noun

• Speech recognition: given waveform, determine 
phonemes

• Biological sequences: classification, search, alignment

• Computer vision: identify who’s walking in video, tracking

28
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Fundamental HMM Tasks
HMM Task PGM Task

Evaluation. Given an HMM 𝜇 and 
observation sequence 𝑂, determine 
likelihood Pr(𝑂|𝜇)

Probabilistic 
inference

Decoding. Given an HMM 𝜇 and 
observation sequence 𝑂, determine most 
probable hidden state sequence 𝑄

MAP point
estimate

Learning. Given an observation sequence 𝑂
and set of states, learn parameters 𝐴, 𝐵, Π

Statistical 
inference

29
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Pixel labelling tasks in Computer Vision

30

Interactive figure-ground segmentation (Boykov & Jolly 2011)

Semantic labelling (Gould et al. 09)

Denoising (Felzenszwalb & Huttenlocher 04)
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What these tasks have in common

• Hidden state representing semantics of image
* Semantic labelling:   Cow vs. tree vs. grass vs. sky vs. house
* Fore-back segment: Figure vs. ground
* Denoising:                  Clean pixels

• Pixels of image
* What we observe of hidden state

• Remind you of HMMs?

31
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A hidden square-lattice Markov random field

• Hidden states:
square-lattice model
* Boolean for

two-class
states

* Discrete for
multi-class

* Continuous
for denoising

• Pixels: observed outputs
* Continuous e.g. Normal

32

𝑞$&

𝑜$&
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Application to sequences: CRFs

• Conditional Random Field: Same model applied to
sequences
* observed outputs are words, speech, amino acids etc
* states are tags: part-of-speech, phone, alignment…

• CRFs are discriminative, model P(Q|O) 
* versus HMM’s which are generative, P(Q,O)
* undirected PGM more general and expressive

33

𝑞* 𝑞+𝑞"𝑞!
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Summary

• Probabilistic graphical models
* Motivation: applications, unifies algorithms
* Motivation: ideal tool for Bayesians
* Independence lowers computational/model complexity
* PGMs: compact representation of factorised joints
* U-PGMs

• Example PGMs and applications

Next time: elimination for probabilistic inference
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