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This lecture
• Dual formulation of the SVM

• Kernelisation
* Basis expansion on dual formulation of SVMs
* “Kernel trick”; Fast computation of feature space dot product

• Modular learning
* Separating “learning module” from feature transformation
* Representer theorem

• Constructing kernels
* Overview of popular kernels and their properties
* Mercer’s theorem
* Learning on unconventional data types
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Lagrangian Duality 
for the SVM

An equivalent formulation, with 
important consequences.
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Soft-margin SVM recap
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• Soft-margin SVM objective:

argmin
𝒘,#,𝝃

1
2
𝒘 % + 𝐶,

&'(

)

𝜉&

s.t. 𝑦& 𝒘*𝒙& + 𝑏 ≥ 1 − 𝜉& for 𝑖 = 1,… , 𝑛

𝜉& ≥ 0 for 𝑖 = 1,… , 𝑛

• While we can optimise the above “primal”, often 
instead work with the dual
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Constrained optimisation
• Constrained optimisation: canonical form

minimise 𝑓(𝒙)

s.t. 𝑔! 𝒙 ≤ 0, 𝑖 = 1,… , 𝑛

ℎ" 𝒙 = 0, 𝑗 = 1,… ,𝑚

* E.g., find deepest point in the lake, south of the bridge

• Gradient descent doesn’t immediately apply

• Hard-margin SVM: argmin
𝒘,%

&
'
𝒘 ' s.t. 1 − 𝑦! 𝒘(𝒙! + 𝑏 ≤ 0 for 𝑖 = 1,… , 𝑛

• Method of Lagrange multipliers
* Transform to unconstrained optimisation
* Transform primal program to a related dual program, alternate to primal
* Analyse necessary & sufficient conditions for solutions of both programs
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The Lagrangian and duality

• Introduce auxiliary objective function via auxiliary variables

ℒ 𝒙, 𝝀, 𝝂 = 𝑓 𝒙 + ∑!"#$ 𝜆!𝑔! 𝒙 + ∑%"#& 𝜈%ℎ% 𝒙
* Called the Lagrangian function
* New 𝝀 and 𝝂 are called the Lagrange multipliers or dual variables

• (Old) primal program: min𝒙max𝝀)𝟎,𝝂ℒ 𝒙, 𝝀, 𝝂

• (New) dual program: max𝝀)𝟎,𝝂min𝒙ℒ 𝒙, 𝝀, 𝝂

• Duality theory relates primal/dual:
* Weak duality: dual optimum ≤ primal optimum
* For convex programs (inc. SVM!) strong duality: optima coincide!
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Primal constraints 
became penalties

May be easier to 
solve, advantageous
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Karush-Kuhn-Tucker Necessary Conditions

• Lagrangian: ℒ 𝒙, 𝝀, 𝝂 = 𝑓 𝒙 + ∑!"#$ 𝜆!𝑔! 𝒙 + ∑%"#& 𝜈%ℎ% 𝒙

• Necessary conditions for optimality of a primal solution

• Primal feasibility:
* 𝑔! 𝒙∗ ≤ 0, 𝑖 = 1,… , 𝑛
* ℎ% 𝒙∗ = 0, 𝑗 = 1,… ,𝑚

• Dual feasibility: 𝜆&∗ ≥ 0 for 𝑖 = 1,… , 𝑛

• Complementary slackness: 𝜆&∗𝑔& 𝒙∗ = 0, 𝑖 = 1,… , 𝑛

• Stationarity: ∇𝒙ℒ 𝒙∗, 𝝀∗, 𝝂∗ = 𝟎

7

Souped-up version of necessary 
condition “derivative is zero” in 
unconstrained optimisation.

Don’t penalise if 
constraint satisfied
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KKT conditions for hard-margin SVM
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The Lagrangian

ℒ 𝒘, 𝑏, 𝝀 =
1
2
𝒘 % −,

&'(

)

𝜆& 𝑦& 𝒘*𝒙& + 𝑏 − 1

KKT conditions:
* Feasibility: 𝑦! 𝒘∗ .𝒙! + 𝑏∗ − 1 ≥ 0 for 𝑖 = 1,… , 𝑛
* Feasibility: 𝜆!∗ ≥ 0 for 𝑖 = 1,… , 𝑛
* Complementary slackness: 𝜆!∗ 𝑦! 𝒘∗ .𝒙! + 𝑏∗ − 1 = 0
* Stationarity: ∇𝒘,0ℒ 𝒘∗, 𝑏∗, 𝝀∗ = 𝟎
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Let’s minimise Lagrangian w.r.t primal variables
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• Lagrangian:

ℒ 𝒘, 𝑏, 𝝀 =
1
2 𝒘 ! −*

"#$

%

𝜆" 𝑦" 𝒘&𝒙" + 𝑏 − 1

• Stationarity conditions give us more information:
'ℒ
')
= ∑"#$% 𝜆"𝑦" = 0

'ℒ
'*!

= 𝑤+∗ − ∑"#$% 𝜆"𝑦" 𝒙" + = 0

• The Lagrangian becomes (with additional constraint, above)

ℒ 𝝀 =*
"#$

%

𝜆" −
1
2*
"#$

%

*
+#$

%

𝜆"𝜆+𝑦"𝑦+𝒙"&𝒙+

New constraint

Eliminates primal variables
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Dual program for hard-margin SVM
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• Having minimised the Lagrangian with respect to primal variables, 
now maximising w.r.t dual variables yields the dual program

argmax
𝝀

*
"#$

%

𝜆" −
1
2
*
"#$

%

*
+#$

%

𝜆"𝜆+𝑦"𝑦+𝒙"&𝒙+

s.t. 𝜆" ≥ 0 and ∑"#$% 𝜆"𝑦" = 0

• Strong duality: Solving dual, solves the primal!!

• Like primal: A so-called quadratic program - off-the-shelf software 
can solve – more later

• Unlike primal:
* Complexity of solution is O(n3) instead of O(d3) – more later
* Program depends on dot products of data only – more later on kernels!
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Making predictions with dual solution
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Recovering primal variables

• Recall from stationarity: 𝑤%∗ − ∑!"#$ 𝜆!𝑦! 𝒙! % = 0

• Complementary slackness: 𝑏∗ can be recovered from dual 
solution, noting for any example 𝑗 with 𝜆!∗ > 0, we have 
𝑦% 𝑏∗ + ∑!"#$ 𝜆!∗𝑦!𝒙!.𝒙% = 1 (these are the support vectors)

Testing: classify new instance 𝒙 based on sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝒙&*𝒙
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Soft-margin SVM’s dual
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• Training: find 𝝀 that solves

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝒙&*𝒙G

s.t. 𝐶 ≥ 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: same pattern as in as in hard-
margin case

box constraints
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Finally… Training the SVM

• The SVM dual problems are quadratic programs, 
solved in 𝑂 𝑛H , or 𝑂(𝑑H) for the primal.

• This can inefficient; specialised solutions exist
* chunking: original SVM training algorithm exploits fact that 

many 𝜆s will be zero (sparsity)

* sequential minimal optimisation (SMO), an extreme case 
of chunking. An iterative procedure that analytically 
optimises randomly chosen pairs of 𝜆s per iteration

13
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Mini summary

• Dual vs primal formulation of SVM

• Method of Lagrange Multipliers

• Approaches to make predictions and train

Next: Kernelising the SVM

14
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Kernelising the SVM

Feature transformation by basis expansion; 
sped up by direct evaluation of kernels –

the ‘kernel trick’

15
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Handling non-linear data with the SVM

16

• Method 1: Soft-margin SVM

• Method 2: Feature space transformation
* Map data into a new feature space
* Run hard-margin or soft-margin SVM in new space
* Decision boundary is non-linear in original space

φ
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Feature transformation (Basis expansion)

• Consider a binary classification 
problem

• Each example has features [𝑥$, 𝑥!]

• Not linearly separable

17

Huh?

• Now ‘add’ a feature 𝑥. = 𝑥$! + 𝑥!!

• Each point is now [𝑥$, 𝑥!, 𝑥$! + 𝑥!!]

• Linearly separable!
Aww ^.^
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Naïve workflow
• Choose/design a linear model

• Choose/design a high-dimensional transformation 𝜑 𝒙
* Hoping that after adding a lot of various features some of them will 

make the data linearly separable

• For each training example, and for each new instance 
compute 𝜑 𝒙

• Train classifier/Do predictions

18

• Problem: impractical/impossible to compute 𝜑(𝒙) for 
high/infinite-dimensional 𝜑(𝒙)
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Hard-margin SVM’s dual formulation
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• Training: finding 𝝀 that solve

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝒙&*𝒙G

s.t. 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: classify instance 𝒙 as sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝒙&*𝒙

Note: 𝑏∗ found by solving for it in 𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝒙#'𝒙" = 1 for any support vector j

dot-product

dot-product
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Hard-margin SVM in feature space
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• Training: finding 𝝀 that solve

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝜑 𝒙& *𝜑 𝒙G

s.t. 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: classify new instance 𝒙 as sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝜑 𝒙& *𝜑 𝒙

Note: 𝑏∗ found by solving for it in 𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝜑 𝒙# '𝜑 𝒙" = 1 for support vector 𝑗
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Observation: Kernel representation

• Both parameter estimation and computing predictions 
depend on data only in a form of a dot product
* In original space 𝒖&𝒗 = ∑"#$9 𝑢"𝑣"
* In transformed space 𝜑 𝒖 .𝜑 𝒗 = ∑!"#2 𝜑 𝒖 !𝜑 𝒗 !

21

• Kernel is a function that can be expressed as a dot 
product in some feature space 𝐾 𝒖, 𝒗 = 𝜑 𝒖 !𝜑 𝒗
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Kernel as shortcut: Example

• For some 𝜑 𝒙 ’s, kernel is faster to compute directly than 
first mapping to feature space then taking dot product.

• For example, consider two vectors 𝒖 = 𝑢# and 𝒗 = 𝑣#
and transformation 𝜑 𝒙 = [𝑥#3, 2𝑐𝑥#, 𝑐], some 𝑐

22

* So 𝜑 𝒖 = 𝑢&', 2𝑐𝑢&, 𝑐
(

and 𝜑 𝒗 = 𝑣&', 2𝑐𝑣&, 𝑐
(

* Then 𝜑 𝒖 (𝜑 𝒗 = 𝑢&'𝑣&' + 2𝑐𝑢&𝑣& + 𝑐'

• This can be alternatively computed directly as
𝜑 𝒖 .𝜑 𝒗 = 𝑢#𝑣# + 𝑐 3

* Here 𝐾 𝒖, 𝒗 = 𝑢&𝑣& + 𝑐 ' is the corresponding kernel

+2 operations2 operations

+4 operations = 8 ops.

3 operations
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More generally: The “kernel trick”
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• Consider two training points 𝒙! and 𝒙% and their dot product 
in the transformed space. 

• 𝑘!% ≡ 𝜑 𝒙! .𝜑 𝒙% kernel matrix can be computed as:
1. Compute 𝜑 𝒙! (

2. Compute 𝜑 𝒙"
3. Compute 𝑘!" = 𝜑 𝒙! (𝜑 𝒙"

• However, for some transformations 𝜑, there’s a “shortcut” 
function that gives exactly the same answer 𝐾 𝒙!, 𝒙% = 𝑘!%
* Doesn’t involve steps 1 – 3 and no computation of 𝜑(𝒙!) and 𝜑(𝒙")
* Usually 𝑘!" computable in 𝑂 𝑚 , but computing 𝜑 𝒙 requires 𝑂 𝑙 , 

where 𝑙 ≫ 𝑚 (impractical) and even 𝑙 = ∞ (infeasible)
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Kernel hard-margin SVM

24

• Training: finding 𝝀 that solve

argmax
𝝀

-
#$%

&

𝜆# −
1
2
-
#$%

&

-
'$%

&

𝜆#𝜆'𝑦#𝑦'𝐾 𝒙# , 𝒙'

s.t. 𝜆# ≥ 0 and ∑#$%& 𝜆#𝑦# = 0

• Making predictions: classify new instance 𝒙 based on the 
sign of

𝑠 = 𝑏∗ +-
#$%

&

𝜆#∗𝑦#𝐾 𝒙# , 𝒙

• Here 𝑏∗ can be found by noting that for support vector 𝑗 we have 
𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝐾 𝒙", 𝒙+ = 1

feature mapping is 
implied by kernel

feature mapping is 
implied by kernel
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Approaches to non-linearity

NNets

• Elements of 𝒖 = 𝜑 𝒙
are transformed input 𝒙

• This 𝜑 has weights 
learned from data

SVMs

• Choice of kernel K
determines features 𝜑

• Don’t learn 𝜑 weights

• But, don’t even need to 
compute 𝜑 so can 
support v high dim. 𝜑

• Also support arbitrary 
data types  

25

𝑥&

𝑥'

𝑥)

𝑢&
𝑧&

𝑧'

𝑧*
𝑢+…

…

…
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Mini summary

• Kernelisation
* Basis expansion on dual formulation of SVMs
* “Kernel trick”; Fast computation of feature space dot 

product

Next: Kernel methods as modular machine learning

26
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Modular Learning

Kernelisation beyond SVMs;
Separating the “learning module” 
from feature space transformation

27
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Modular learning

• All information about feature mapping is 
concentrated within the kernel

• In order to use a different feature mapping, simply 
change the kernel function

• Algorithm design decouples into choosing a “learning 
method” (e.g., SVM vs logistic regression) and 
choosing feature space mapping, i.e., kernel

• But how to know if an algorithm is a kernel method?

28
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Representer theorem

Theorem: For any training set 𝒙" , 𝑦" "#$% , any empirical risk function E, 
monotonic increasing function g, then any solution

𝑓∗ ∈ argmin: 𝐸 𝒙$, 𝑦$, 𝑓 𝒙$ , … , 𝒙%, 𝑦%, 𝑓(𝒙%) + 𝑔 𝑓
has representation for some coefficients

𝑓∗(𝒙) =.
"#$

%
𝛼" 𝑘 𝒙, 𝒙"

• Tells us when a (decision-theoretic) learner is kernelizable

• The dual tells us the form this linear kernel representation takes

• SVM not the only case:
* Ridge regression
* Logistic regression
* Principal component analysis (PCA)
* Canonical correlation analysis (CCA)
* Linear discriminant analysis (LDA)
* and many more … 29

Kernel method 
solutions always 
in “span” of the 

data
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Mini summary

• Kernel methods are modular
* Choose learning algorithm
* Choose kernel

• Representer thm: recognises kernelisable learners

Next: Constructing and recognising kernels

30
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Constructing Kernels

An overview of popular kernels, 
kernel properties for building and 

recognising new kernels

31
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Polynomial kernel
• Function 𝐾 𝒖, 𝒗 = 𝒖(𝒗 + 𝑐 , is called polynomial kernel

* Here 𝒖 and 𝒗 are vectors with 𝑚 components
* 𝑑 ≥ 0 is an integer and 𝑐 ≥ 0 is a constant

• Without loss of generality, assume 𝑐 = 0
* If it’s not, add 𝑐 as a dummy feature to 𝒖 and 𝒗

• 𝒖(𝒗 , = 𝑢&𝑣& +⋯+ 𝑢)𝑣) 𝑢&𝑣& +⋯+ 𝑢)𝑣) … 𝑢&𝑣& +⋯+ 𝑢)𝑣)

• = ∑!-&. 𝑢&𝑣& /() … 𝑢)𝑣) /(*

• Here 0 ≤ 𝑎#" ≤ 𝑑 and 𝑙 are integers

• = ∑!-&. 𝑢&
/() …𝑢)

/(* ′ 𝑣&
/() …𝑣)

/(*

• = ∑!-&. 𝜑 𝒖 !𝜑 𝒗 !

• Feature map 𝜑:ℝ) → ℝ., where 𝜑! 𝒙 = 𝑥&
/() …𝑥)

/(*

32
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Identifying new kernels
• Method 1: Let 𝐾( 𝒖, 𝒗 , 𝐾% 𝒖, 𝒗 be kernels, 𝑐 > 0

be a constant, and 𝑓 𝒙 be a real-valued function. 
Then each of the following is also a kernel:
* 𝐾 𝒖, 𝒗 = 𝐾# 𝒖, 𝒗 + 𝐾3 𝒖, 𝒗
* 𝐾 𝒖, 𝒗 = 𝑐𝐾# 𝒖, 𝒗
* 𝐾 𝒖, 𝒗 = 𝑓 𝒖 𝐾# 𝒖, 𝒗 𝑓 𝒗
* See Bishop for more identities

• Method 2: Using Mercer’s theorem (coming up!)

33

Prove 
these!
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Radial basis function kernel
• Function 𝐾 𝒖, 𝒗 = exp −𝛾 𝒖 − 𝒗 ' is the radial basis function kernel

(aka Gaussian kernel)
* Here 𝛾 > 0 is the spread parameter

• exp −𝛾 𝒖 − 𝒗 ' = exp −𝛾 𝒖 − 𝒗 ( 𝒖 − 𝒗

• = exp −𝛾 𝒖(𝒖 − 2𝒖(𝒗 + 𝒗(𝒗

• = exp −𝛾𝒖(𝒖 exp 2𝛾𝒖(𝒗 exp −𝛾𝒗(𝒗

• = 𝑓 𝒖 exp 2𝛾𝒖(𝒗 𝑓 𝒗

• = 𝑓 𝒖 ∑,-01 𝑟, 𝒖(𝒗 , 𝑓 𝒗

• Here, each 𝒖(𝒗 , is a polynomial kernel. Using kernel identities, we 
conclude that the middle term is a kernel, and hence the whole expression 
is a kernel

34

Power series 
expansion
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Mercer’s Theorem
• Question: given φ 𝒖 , is there a good kernel to use?

• Inverse question: given some function 𝐾(𝒖, 𝒗), 
is this a valid kernel? In other words, is there a mapping 
φ 𝒖  implied by the kernel?

• Mercer’s theorem:
* Consider a finite sequence of objects 𝒙#, … , 𝒙$
* Construct 𝑛×𝑛 matrix of pairwise values 𝐾(𝒙!, 𝒙%)
* 𝐾 is a valid kernel if this matrix is positive-

semidefinite, for all possible sequences 𝒙#, … , 𝒙$

35
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Handling arbitrary data structures

36

• Kernels are powerful approach to deal with many data types

• Could define similarity function on variable length strings

K(“science is organized knowledge”, “wisdom is organized life”)

• However, not every function on two objects is a valid kernel

• Remember that we need that function 𝐾 𝒖, 𝒗 to imply a dot 
product in some feature space
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A large variety of kernels

37
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Mini Summary
• Constructing kernels

* An overview of popular kernels and their properties
* Mercer’s theorem
* Extending machine learning beyond conventional data 

structure

Next lecture: Perceptron
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