
Lecturer: Feng Liu

Lecture 9. Kernel Methods
COMP90051 Statistical Machine Learning

Copyright: University of Melbourne

COMP90051 Statistical Machine Learning

This lecture
• Dual formulation of the SVM

• Kernelisation
* Basis expansion on dual formulation of SVMs
* “Kernel trick”; Fast computation of feature space dot product

• Modular learning
* Separating “learning module” from feature transformation
* Representer theorem

• Constructing kernels
* Overview of popular kernels and their properties
* Mercer’s theorem
* Learning on unconventional data types

2

COMP90051 Statistical Machine Learning

Lagrangian Duality
for the SVM

An equivalent formulation, with
important consequences.

3

COMP90051 Statistical Machine Learning

Soft-margin SVM recap

4

• Soft-margin SVM objective:

argmin
𝒘,#,𝝃

1
2
𝒘 % + 𝐶,

&'(

)

𝜉&

s.t. 𝑦& 𝒘*𝒙& + 𝑏 ≥ 1 − 𝜉& for 𝑖 = 1,… , 𝑛

𝜉& ≥ 0 for 𝑖 = 1,… , 𝑛

• While we can optimise the above “primal”, often
instead work with the dual

COMP90051 Statistical Machine Learning

Constrained optimisation
• Constrained optimisation: canonical form

minimise 𝑓(𝒙)

s.t. 𝑔! 𝒙 ≤ 0, 𝑖 = 1,… , 𝑛

ℎ" 𝒙 = 0, 𝑗 = 1,… ,𝑚

* E.g., find deepest point in the lake, south of the bridge

• Gradient descent doesn’t immediately apply

• Hard-margin SVM: argmin
𝒘,%

&
'
𝒘 ' s.t. 1 − 𝑦! 𝒘(𝒙! + 𝑏 ≤ 0 for 𝑖 = 1,… , 𝑛

• Method of Lagrange multipliers
* Transform to unconstrained optimisation
* Transform primal program to a related dual program, alternate to primal
* Analyse necessary & sufficient conditions for solutions of both programs

5

COMP90051 Statistical Machine Learning

The Lagrangian and duality

• Introduce auxiliary objective function via auxiliary variables

ℒ 𝒙, 𝝀, 𝝂 = 𝑓 𝒙 + ∑!"#$ 𝜆!𝑔! 𝒙 + ∑%"#& 𝜈%ℎ% 𝒙
* Called the Lagrangian function
* New 𝝀 and 𝝂 are called the Lagrange multipliers or dual variables

• (Old) primal program: min𝒙max𝝀)𝟎,𝝂ℒ 𝒙, 𝝀, 𝝂

• (New) dual program: max𝝀)𝟎,𝝂min𝒙ℒ 𝒙, 𝝀, 𝝂

• Duality theory relates primal/dual:
* Weak duality: dual optimum ≤ primal optimum
* For convex programs (inc. SVM!) strong duality: optima coincide!

6

Primal constraints
became penalties

May be easier to
solve, advantageous

COMP90051 Statistical Machine Learning

Karush-Kuhn-Tucker Necessary Conditions

• Lagrangian: ℒ 𝒙, 𝝀, 𝝂 = 𝑓 𝒙 + ∑!"#$ 𝜆!𝑔! 𝒙 + ∑%"#& 𝜈%ℎ% 𝒙

• Necessary conditions for optimality of a primal solution

• Primal feasibility:
* 𝑔! 𝒙∗ ≤ 0, 𝑖 = 1,… , 𝑛
* ℎ% 𝒙∗ = 0, 𝑗 = 1,… ,𝑚

• Dual feasibility: 𝜆&∗ ≥ 0 for 𝑖 = 1,… , 𝑛

• Complementary slackness: 𝜆&∗𝑔& 𝒙∗ = 0, 𝑖 = 1,… , 𝑛

• Stationarity: ∇𝒙ℒ 𝒙∗, 𝝀∗, 𝝂∗ = 𝟎

7

Souped-up version of necessary
condition “derivative is zero” in
unconstrained optimisation.

Don’t penalise if
constraint satisfied

COMP90051 Statistical Machine Learning

KKT conditions for hard-margin SVM

8

The Lagrangian

ℒ 𝒘, 𝑏, 𝝀 =
1
2
𝒘 % −,

&'(

)

𝜆& 𝑦& 𝒘*𝒙& + 𝑏 − 1

KKT conditions:
* Feasibility: 𝑦! 𝒘∗ .𝒙! + 𝑏∗ − 1 ≥ 0 for 𝑖 = 1,… , 𝑛
* Feasibility: 𝜆!∗ ≥ 0 for 𝑖 = 1,… , 𝑛
* Complementary slackness: 𝜆!∗ 𝑦! 𝒘∗ .𝒙! + 𝑏∗ − 1 = 0
* Stationarity: ∇𝒘,0ℒ 𝒘∗, 𝑏∗, 𝝀∗ = 𝟎

COMP90051 Statistical Machine Learning

Let’s minimise Lagrangian w.r.t primal variables

9

• Lagrangian:

ℒ 𝒘, 𝑏, 𝝀 =
1
2 𝒘 ! −*

"#$

%

𝜆" 𝑦" 𝒘&𝒙" + 𝑏 − 1

• Stationarity conditions give us more information:
'ℒ
')
= ∑"#$% 𝜆"𝑦" = 0

'ℒ
'*!

= 𝑤+∗ − ∑"#$% 𝜆"𝑦" 𝒙" + = 0

• The Lagrangian becomes (with additional constraint, above)

ℒ 𝝀 =*
"#$

%

𝜆" −
1
2*
"#$

%

*
+#$

%

𝜆"𝜆+𝑦"𝑦+𝒙"&𝒙+

New constraint

Eliminates primal variables

COMP90051 Statistical Machine Learning

Dual program for hard-margin SVM

10

• Having minimised the Lagrangian with respect to primal variables,
now maximising w.r.t dual variables yields the dual program

argmax
𝝀

*
"#$

%

𝜆" −
1
2
*
"#$

%

*
+#$

%

𝜆"𝜆+𝑦"𝑦+𝒙"&𝒙+

s.t. 𝜆" ≥ 0 and ∑"#$% 𝜆"𝑦" = 0

• Strong duality: Solving dual, solves the primal!!

• Like primal: A so-called quadratic program - off-the-shelf software
can solve – more later

• Unlike primal:
* Complexity of solution is O(n3) instead of O(d3) – more later
* Program depends on dot products of data only – more later on kernels!

COMP90051 Statistical Machine Learning

Making predictions with dual solution

11

Recovering primal variables

• Recall from stationarity: 𝑤%∗ − ∑!"#$ 𝜆!𝑦! 𝒙! % = 0

• Complementary slackness: 𝑏∗ can be recovered from dual
solution, noting for any example 𝑗 with 𝜆!∗ > 0, we have
𝑦% 𝑏∗ + ∑!"#$ 𝜆!∗𝑦!𝒙!.𝒙% = 1 (these are the support vectors)

Testing: classify new instance 𝒙 based on sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝒙&*𝒙

COMP90051 Statistical Machine Learning

Soft-margin SVM’s dual

12

• Training: find 𝝀 that solves

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝒙&*𝒙G

s.t. 𝐶 ≥ 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: same pattern as in as in hard-
margin case

box constraints

COMP90051 Statistical Machine Learning

Finally… Training the SVM

• The SVM dual problems are quadratic programs,
solved in 𝑂 𝑛H , or 𝑂(𝑑H) for the primal.

• This can inefficient; specialised solutions exist
* chunking: original SVM training algorithm exploits fact that

many 𝜆s will be zero (sparsity)

* sequential minimal optimisation (SMO), an extreme case
of chunking. An iterative procedure that analytically
optimises randomly chosen pairs of 𝜆s per iteration

13

COMP90051 Statistical Machine Learning

Mini summary

• Dual vs primal formulation of SVM

• Method of Lagrange Multipliers

• Approaches to make predictions and train

Next: Kernelising the SVM

14

COMP90051 Statistical Machine Learning

Kernelising the SVM

Feature transformation by basis expansion;
sped up by direct evaluation of kernels –

the ‘kernel trick’

15

COMP90051 Statistical Machine Learning

Handling non-linear data with the SVM

16

• Method 1: Soft-margin SVM

• Method 2: Feature space transformation
* Map data into a new feature space
* Run hard-margin or soft-margin SVM in new space
* Decision boundary is non-linear in original space

φ

COMP90051 Statistical Machine Learning

Feature transformation (Basis expansion)

• Consider a binary classification
problem

• Each example has features [𝑥$, 𝑥!]

• Not linearly separable

17

Huh?

• Now ‘add’ a feature 𝑥. = 𝑥$! + 𝑥!!

• Each point is now [𝑥$, 𝑥!, 𝑥$! + 𝑥!!]

• Linearly separable!
Aww ^.^

COMP90051 Statistical Machine Learning

Naïve workflow
• Choose/design a linear model

• Choose/design a high-dimensional transformation 𝜑 𝒙
* Hoping that after adding a lot of various features some of them will

make the data linearly separable

• For each training example, and for each new instance
compute 𝜑 𝒙

• Train classifier/Do predictions

18

• Problem: impractical/impossible to compute 𝜑(𝒙) for
high/infinite-dimensional 𝜑(𝒙)

COMP90051 Statistical Machine Learning

Hard-margin SVM’s dual formulation

19

• Training: finding 𝝀 that solve

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝒙&*𝒙G

s.t. 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: classify instance 𝒙 as sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝒙&*𝒙

Note: 𝑏∗ found by solving for it in 𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝒙#'𝒙" = 1 for any support vector j

dot-product

dot-product

COMP90051 Statistical Machine Learning

Hard-margin SVM in feature space

20

• Training: finding 𝝀 that solve

argmax
𝝀

,
&'(

)

𝜆& −
1
2
,
&'(

)

,
G'(

)

𝜆&𝜆G𝑦&𝑦G𝜑 𝒙& *𝜑 𝒙G

s.t. 𝜆& ≥ 0 and ∑&'() 𝜆&𝑦& = 0

• Making predictions: classify new instance 𝒙 as sign of

𝑠 = 𝑏∗ +,
&'(

)

𝜆&∗𝑦&𝜑 𝒙& *𝜑 𝒙

Note: 𝑏∗ found by solving for it in 𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝜑 𝒙# '𝜑 𝒙" = 1 for support vector 𝑗

COMP90051 Statistical Machine Learning

Observation: Kernel representation

• Both parameter estimation and computing predictions
depend on data only in a form of a dot product
* In original space 𝒖&𝒗 = ∑"#$9 𝑢"𝑣"
* In transformed space 𝜑 𝒖 .𝜑 𝒗 = ∑!"#2 𝜑 𝒖 !𝜑 𝒗 !

21

• Kernel is a function that can be expressed as a dot
product in some feature space 𝐾 𝒖, 𝒗 = 𝜑 𝒖 !𝜑 𝒗

COMP90051 Statistical Machine Learning

Kernel as shortcut: Example

• For some 𝜑 𝒙 ’s, kernel is faster to compute directly than
first mapping to feature space then taking dot product.

• For example, consider two vectors 𝒖 = 𝑢# and 𝒗 = 𝑣#
and transformation 𝜑 𝒙 = [𝑥#3, 2𝑐𝑥#, 𝑐], some 𝑐

22

* So 𝜑 𝒖 = 𝑢&', 2𝑐𝑢&, 𝑐
(

and 𝜑 𝒗 = 𝑣&', 2𝑐𝑣&, 𝑐
(

* Then 𝜑 𝒖 (𝜑 𝒗 = 𝑢&'𝑣&' + 2𝑐𝑢&𝑣& + 𝑐'

• This can be alternatively computed directly as
𝜑 𝒖 .𝜑 𝒗 = 𝑢#𝑣# + 𝑐 3

* Here 𝐾 𝒖, 𝒗 = 𝑢&𝑣& + 𝑐 ' is the corresponding kernel

+2 operations2 operations

+4 operations = 8 ops.

3 operations

COMP90051 Statistical Machine Learning

More generally: The “kernel trick”

23

• Consider two training points 𝒙! and 𝒙% and their dot product
in the transformed space.

• 𝑘!% ≡ 𝜑 𝒙! .𝜑 𝒙% kernel matrix can be computed as:
1. Compute 𝜑 𝒙! (

2. Compute 𝜑 𝒙"
3. Compute 𝑘!" = 𝜑 𝒙! (𝜑 𝒙"

• However, for some transformations 𝜑, there’s a “shortcut”
function that gives exactly the same answer 𝐾 𝒙!, 𝒙% = 𝑘!%
* Doesn’t involve steps 1 – 3 and no computation of 𝜑(𝒙!) and 𝜑(𝒙")
* Usually 𝑘!" computable in 𝑂 𝑚 , but computing 𝜑 𝒙 requires 𝑂 𝑙 ,

where 𝑙 ≫ 𝑚 (impractical) and even 𝑙 = ∞ (infeasible)

COMP90051 Statistical Machine Learning

Kernel hard-margin SVM

24

• Training: finding 𝝀 that solve

argmax
𝝀

-
#$%

&

𝜆# −
1
2
-
#$%

&

-
'$%

&

𝜆#𝜆'𝑦#𝑦'𝐾 𝒙# , 𝒙'

s.t. 𝜆# ≥ 0 and ∑#$%& 𝜆#𝑦# = 0

• Making predictions: classify new instance 𝒙 based on the
sign of

𝑠 = 𝑏∗ +-
#$%

&

𝜆#∗𝑦#𝐾 𝒙# , 𝒙

• Here 𝑏∗ can be found by noting that for support vector 𝑗 we have
𝑦" 𝑏∗ + ∑#$%& 𝜆#∗𝑦#𝐾 𝒙", 𝒙+ = 1

feature mapping is
implied by kernel

feature mapping is
implied by kernel

COMP90051 Statistical Machine Learning

Approaches to non-linearity

NNets

• Elements of 𝒖 = 𝜑 𝒙
are transformed input 𝒙

• This 𝜑 has weights
learned from data

SVMs

• Choice of kernel K
determines features 𝜑

• Don’t learn 𝜑 weights

• But, don’t even need to
compute 𝜑 so can
support v high dim. 𝜑

• Also support arbitrary
data types

25

𝑥&

𝑥'

𝑥)

𝑢&
𝑧&

𝑧'

𝑧*
𝑢+…

…

…

COMP90051 Statistical Machine Learning

Mini summary

• Kernelisation
* Basis expansion on dual formulation of SVMs
* “Kernel trick”; Fast computation of feature space dot

product

Next: Kernel methods as modular machine learning

26

COMP90051 Statistical Machine Learning

Modular Learning

Kernelisation beyond SVMs;
Separating the “learning module”
from feature space transformation

27

COMP90051 Statistical Machine Learning

Modular learning

• All information about feature mapping is
concentrated within the kernel

• In order to use a different feature mapping, simply
change the kernel function

• Algorithm design decouples into choosing a “learning
method” (e.g., SVM vs logistic regression) and
choosing feature space mapping, i.e., kernel

• But how to know if an algorithm is a kernel method?

28

COMP90051 Statistical Machine Learning

Representer theorem

Theorem: For any training set 𝒙" , 𝑦" "#$% , any empirical risk function E,
monotonic increasing function g, then any solution

𝑓∗ ∈ argmin: 𝐸 𝒙$, 𝑦$, 𝑓 𝒙$, … , 𝒙%, 𝑦%, 𝑓(𝒙%) + 𝑔 𝑓
has representation for some coefficients

𝑓∗(𝒙) =.
"#$

%
𝛼" 𝑘 𝒙, 𝒙"

• Tells us when a (decision-theoretic) learner is kernelizable

• The dual tells us the form this linear kernel representation takes

• SVM not the only case:
* Ridge regression
* Logistic regression
* Principal component analysis (PCA)
* Canonical correlation analysis (CCA)
* Linear discriminant analysis (LDA)
* and many more … 29

Kernel method
solutions always
in “span” of the

data

COMP90051 Statistical Machine Learning

Mini summary

• Kernel methods are modular
* Choose learning algorithm
* Choose kernel

• Representer thm: recognises kernelisable learners

Next: Constructing and recognising kernels

30

COMP90051 Statistical Machine Learning

Constructing Kernels

An overview of popular kernels,
kernel properties for building and

recognising new kernels

31

COMP90051 Statistical Machine Learning

Polynomial kernel
• Function 𝐾 𝒖, 𝒗 = 𝒖(𝒗 + 𝑐 , is called polynomial kernel

* Here 𝒖 and 𝒗 are vectors with 𝑚 components
* 𝑑 ≥ 0 is an integer and 𝑐 ≥ 0 is a constant

• Without loss of generality, assume 𝑐 = 0
* If it’s not, add 𝑐 as a dummy feature to 𝒖 and 𝒗

• 𝒖(𝒗 , = 𝑢&𝑣& +⋯+ 𝑢)𝑣) 𝑢&𝑣& +⋯+ 𝑢)𝑣) … 𝑢&𝑣& +⋯+ 𝑢)𝑣)

• = ∑!-&. 𝑢&𝑣& /() … 𝑢)𝑣) /(*

• Here 0 ≤ 𝑎#" ≤ 𝑑 and 𝑙 are integers

• = ∑!-&. 𝑢&
/() …𝑢)

/(* ′ 𝑣&
/() …𝑣)

/(*

• = ∑!-&. 𝜑 𝒖 !𝜑 𝒗 !

• Feature map 𝜑:ℝ) → ℝ., where 𝜑! 𝒙 = 𝑥&
/() …𝑥)

/(*

32

COMP90051 Statistical Machine Learning

Identifying new kernels
• Method 1: Let 𝐾(𝒖, 𝒗 , 𝐾% 𝒖, 𝒗 be kernels, 𝑐 > 0

be a constant, and 𝑓 𝒙 be a real-valued function.
Then each of the following is also a kernel:
* 𝐾 𝒖, 𝒗 = 𝐾# 𝒖, 𝒗 + 𝐾3 𝒖, 𝒗
* 𝐾 𝒖, 𝒗 = 𝑐𝐾# 𝒖, 𝒗
* 𝐾 𝒖, 𝒗 = 𝑓 𝒖 𝐾# 𝒖, 𝒗 𝑓 𝒗
* See Bishop for more identities

• Method 2: Using Mercer’s theorem (coming up!)

33

Prove
these!

COMP90051 Statistical Machine Learning

Radial basis function kernel
• Function 𝐾 𝒖, 𝒗 = exp −𝛾 𝒖 − 𝒗 ' is the radial basis function kernel

(aka Gaussian kernel)
* Here 𝛾 > 0 is the spread parameter

• exp −𝛾 𝒖 − 𝒗 ' = exp −𝛾 𝒖 − 𝒗 (𝒖 − 𝒗

• = exp −𝛾 𝒖(𝒖 − 2𝒖(𝒗 + 𝒗(𝒗

• = exp −𝛾𝒖(𝒖 exp 2𝛾𝒖(𝒗 exp −𝛾𝒗(𝒗

• = 𝑓 𝒖 exp 2𝛾𝒖(𝒗 𝑓 𝒗

• = 𝑓 𝒖 ∑,-01 𝑟, 𝒖(𝒗 , 𝑓 𝒗

• Here, each 𝒖(𝒗 , is a polynomial kernel. Using kernel identities, we
conclude that the middle term is a kernel, and hence the whole expression
is a kernel

34

Power series
expansion

COMP90051 Statistical Machine Learning

Mercer’s Theorem
• Question: given φ 𝒖 , is there a good kernel to use?

• Inverse question: given some function 𝐾(𝒖, 𝒗),
is this a valid kernel? In other words, is there a mapping
φ 𝒖 implied by the kernel?

• Mercer’s theorem:
* Consider a finite sequence of objects 𝒙#, … , 𝒙$
* Construct 𝑛×𝑛 matrix of pairwise values 𝐾(𝒙!, 𝒙%)
* 𝐾 is a valid kernel if this matrix is positive-

semidefinite, for all possible sequences 𝒙#, … , 𝒙$

35

COMP90051 Statistical Machine Learning

Handling arbitrary data structures

36

• Kernels are powerful approach to deal with many data types

• Could define similarity function on variable length strings

K(“science is organized knowledge”, “wisdom is organized life”)

• However, not every function on two objects is a valid kernel

• Remember that we need that function 𝐾 𝒖, 𝒗 to imply a dot
product in some feature space

COMP90051 Statistical Machine Learning

A large variety of kernels

37

COMP90051 Statistical Machine Learning

Mini Summary
• Constructing kernels

* An overview of popular kernels and their properties
* Mercer’s theorem
* Extending machine learning beyond conventional data

structure

Next lecture: Perceptron

38

