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This lecture

• How irrelevant features make optimisation ill-posed

• Regularising linear regression
* Ridge regression
* The lasso
* Connections to Bayesian MAP

• Regularising non-linear regression

• Bias-variance
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Regularisation

Process of introducing additional information in order to 
solve an ill-posed problem or to prevent overfitting

• Major technique & theme, throughout ML

• Addresses one or more of the following related problems
* Avoids ill-conditioning (a computational problem)
* Avoids overfitting (a statistical problem)
* Introduce prior knowledge into modelling 

• This is achieved by augmenting the objective function

• In this lecture: we cover the first two aspects. We will 
cover more of regularisation throughout the subject
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The Problem with 
Irrelevant Features

Linear regression on rank-deficient data.
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Example 1: Feature importance
• Linear model on three features

* 𝐗 is matrix on 𝑛 = 4 instances (rows)
* Model: 𝑦 = 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# +𝑤$

5-5

-4

-3

-2

-1

0

1

2

3

4

5

w1 w2 w3

Question: Which feature is 
more important?
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Example 1: Feature importance
• Linear model on three features

* 𝐗 is matrix on 𝑛 = 4 instances (rows)
* Model: 𝑦 = 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# +𝑤$

6-5

-4

-3

-2

-1

0

1

2

3

4

5

w1 w2 w3



COMP90051 Statistical Machine Learning

Example 1: Irrelevant features
• Linear model on three features, first two same

* 𝐗 is matrix on 𝑛 = 4 instances (rows)
* Model: 𝑦 = 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# +𝑤$
* First two columns of 𝑿 identical
* Feature 2 (or 1) is irrelevant
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• Effect of perturbations 
on model predictions?
* Add ∆ to 𝑤!
* Subtract ∆ from 𝑤"
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Example 1: Irrelevant features
• Linear model on three features, first two same

* 𝐗 is matrix on 𝑛 = 4 instances (rows)
* Model: 𝑦 = 𝑤!𝑥! +𝑤"𝑥" +𝑤#𝑥# +𝑤$
* First two columns of 𝐗 identical
* Feature 2 (or 1) is irrelevant
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Problems with irrelevant features

• In example, suppose !𝑤!, !𝑤", !𝑤#, !𝑤$ ′ is “optimal”

• For any 𝛿 new !𝑤!, !𝑤" + 𝛿,!𝑤# − 𝛿,!𝑤$ % get
* Same predictions!
* Same sum of squared errors!

• Problems this highlights
* The solution is not unique
* Lack of interpretability
* Optimising to learn parameters is ill-posed problem

9



COMP90051 Statistical Machine Learning

Irrelevant (co-linear) features in general
• Extreme case: features complete clones

• For linear models, more generally
* Feature 𝐗⋅" is irrelevant if
* 𝐗⋅" is a linear combination of other columns

𝐗⋅" =#
#$"
𝛼# 𝐗⋅#

… for some scalars 𝛼#. Also called multicollinearity
* Equivalently: Some eigenvalue of 𝐗%𝐗 is zero

• Even near-irrelevance/colinearity can be problematic
* V small eigenvalues of 𝐗%𝐗

• Not just a pathological extreme; easy to happen!

10𝐗⋅" denotes the 𝑗-th column of 𝑋
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Example 2: Lack of data

• Extreme example:
* Model has two 

parameters (slope and 
intercept)

* Only one data point

• Underdetermined system
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Ill-posed problems
• In both examples, finding the best 

parameters becomes an 
ill-posed problem

• This means that the problem 
solution is not defined
* In our case 𝑤& and 𝑤' cannot be 

uniquely identified

• Remember normal equations 
solution of linear regression: 
!𝒘 = 𝐗!𝐗 "#𝐗!𝐲

• With irrelevant/multicolinear
features, matrix 𝐗!𝐗 has no inverse
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Mini Summary

• Irrelevant features as collinearity

• Leads to
* Ill-posed optimisation for linear regression
* Broken interpretability

• Multiple intuitions: algebraic, geometric

• Next: Regularisation to the rescue!
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Regularisation in 
Linear Models

Ridge regression and the Lasso 
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Re-conditioning the problem

• Regularisation: introduce an additional 
condition into the system

• The original problem is to minimise
𝐲 − 𝐗𝐰 '

'

• The regularised problem is to minimise

𝐲 − 𝐗𝐰 '
' + 𝜆 𝐰 '

' for 𝜆 > 0

• The solution is now
-𝐰 = 𝐗%𝐗 + λ𝐈 (&𝐗%𝐲

• This formulation is called ridge regression
* Turns the ridge into a deep, singular valley
* Adds 𝜆 to eigenvalues of 𝐗$𝐗: makes invertible

15

𝑤!

𝑤"

sum of squared 
errors

strictly convex



COMP90051 Statistical Machine Learning

Regulariser as a prior

• Without regularisation, parameters found based entirely 
on the information contained in the training set 𝐗
* Regularisation introduces additional information

• Recall our probabilistic model 𝑌 = 𝐱!𝐰+ 𝜀
* Here 𝑌 and 𝜀 are random variables, where 𝜀 denotes noise

• Now suppose that 𝐰 is also a random variable (denoted 
as 𝐖) with a Normal prior distribution

𝐖~𝒩 0,1/𝜆
* I.e. we expect small weights and that no one feature dominates
* Is this always appropriate? E.g. data centring and scaling
* We could encode much more elaborate problem knowledge

16



COMP90051 Statistical Machine Learning

Computing posterior using Bayes rule
• The prior is then used to compute the posterior

𝑝 𝐰|𝐗, 𝐲 =
𝑝 𝐲|𝐗,𝐰 𝑝 𝐰

𝑝 𝐲|𝐗

• Instead of maximum likelihood (MLE), take maximum a posteriori
estimate (MAP)

• Apply log trick, so that
log 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 + log 𝑝𝑟𝑖𝑜𝑟 − log 𝑚𝑎𝑟𝑔

• Arrive at the problem of minimising
𝐲 − 𝐗𝐰 '

' + 𝜆 𝐰 '
'
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posterior
likelihood prior

marginal 
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this term doesn’t 
affect optimisation
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Regulariser as a constraint
• For illustrative purposes, consider a modified problem:

minimise 𝐲 − 𝐗𝐰 &
& subject to 𝐰 #

# ≤ 𝜆 for 𝜆 > 0
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𝐰∗

Ridge regression ( 𝐰 "
")

𝑤!

𝑤"

𝐰∗

Lasso ( 𝐰 !)

𝑤!

𝑤"

Regulariser defines
feasible region

Contour lines of
objective function

Solution to
linear regression

• Lasso (L1 regularisation) encourages solutions to sit on the axes

à Some of the weights are set to zero à Solution is sparse
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Regularised linear regression

Algorithm Minimises Regulariser Solution

Linear 
regression 𝐲 − 𝐗𝐰 !

! None 𝐗"𝐗 #$𝐗"𝐲
(if inverse exists)

Ridge 
regression 𝐲 − 𝐗𝐰 !

! + λ 𝐰 !
!

L2 norm

𝐗"𝐗 + 𝜆𝐈 #$𝐗"𝐲

Lasso 𝐲 − 𝐗𝐰 !
! + λ 𝐰 $

L1 norm No closed-form, but 
solutions are sparse 

and suitable for 
high-dim data
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Mini Summary

• L2 regularisation: Ridge regression
* Re-conditions the optimisation
* Equivalent to MAP with Gaussian prior on weights

• L1 regularisation: The Lasso
* Particularly favoured in high-dim, low-example regimes

• Next: Regularisation and non-linear regression

20
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Regularisation in 
Non-Linear Models

Model selection in ML

21
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Example regression problem

2 4 6 8 10
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5
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Regression Problem

X

Y

How complex a model should we use?
22



COMP90051 Statistical Machine Learning

Underfitting (linear regression)

2 4 6 8 10
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Underfitting (linear regression)
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Y

Model class Θ can be too simple to possibly fit true model.
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Overfitting (non-parametric smoothing)

2 4 6 8 10
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10

Overfitting (kernel smoothing)

X

Y

Model class Θ can be so complex it can fit true model + noise
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Actual model (𝑥sin 𝑥)

2 4 6 8 10

-5
0

5
10

Actual model (x sin x)
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Y

The right model class Θ will sacrifice some training error, for test error.
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Approach: Explicit model selection
• Try different classes of models. Example, try polynomial 

models of various degree 𝑑 (linear, quadratic, cubic, …)

• Use held out validation (cross validation) to select the 
model

1. Split training data into 𝐷'()*+ and 𝐷,)-*.)'/ sets

2. For each degree 𝑑 we have model 𝑓.
1. Train 𝑓) on 𝐷*+,-.
2. Test 𝑓) on 𝐷/,#-),*0

3. Pick degree 8𝑑 that gives the best test score

4. Re-train model 𝑓 0. using all data

26
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Approach: Regularisation

• Augment the problem:
(𝜽 ∈ argmin

𝜽∈*
𝐿 𝑑𝑎𝑡𝑎, 𝜽 + 𝜆𝑅 𝜽

• E.g., ridge regression
!𝒘 ∈ argmin

𝒘∈,
𝐲 − 𝐗𝐰 #

# + λ 𝐰 #
#

• Note that regulariser 𝑅 𝜽 does not depend on data

• Use held out validation/cross validation to choose 𝜆
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Example: Polynomial regression

28

• 9th-order polynomial regression
* model of form

,𝑓 = 𝑤0+𝑤1 𝑥 + … + 𝑤9𝑥9

* regularised with 𝜆 𝐰 "
" term

1.1. Example: Polynomial Curve Fitting 9
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Figure 1.6 Plots of the solutions obtained by minimizing the sum-of-squares error function using the M = 9
polynomial for N = 15 data points (left plot) and N = 100 data points (right plot). We see that increasing the
size of the data set reduces the over-fitting problem.

ing polynomial function matches each of the data points exactly, but between data
points (particularly near the ends of the range) the function exhibits the large oscilla-
tions observed in Figure 1.4. Intuitively, what is happening is that the more flexible
polynomials with larger values of M are becoming increasingly tuned to the random
noise on the target values.

It is also interesting to examine the behaviour of a given model as the size of the
data set is varied, as shown in Figure 1.6. We see that, for a given model complexity,
the over-fitting problem become less severe as the size of the data set increases.
Another way to say this is that the larger the data set, the more complex (in other
words more flexible) the model that we can afford to fit to the data. One rough
heuristic that is sometimes advocated is that the number of data points should be
no less than some multiple (say 5 or 10) of the number of adaptive parameters in
the model. However, as we shall see in Chapter 3, the number of parameters is not
necessarily the most appropriate measure of model complexity.

Also, there is something rather unsatisfying about having to limit the number of
parameters in a model according to the size of the available training set. It would
seem more reasonable to choose the complexity of the model according to the com-
plexity of the problem being solved. We shall see that the least squares approach
to finding the model parameters represents a specific case of maximum likelihood
(discussed in Section 1.2.5), and that the over-fitting problem can be understood as
a general property of maximum likelihood. By adopting a Bayesian approach, theSection 3.4
over-fitting problem can be avoided. We shall see that there is no difficulty from
a Bayesian perspective in employing models for which the number of parameters
greatly exceeds the number of data points. Indeed, in a Bayesian model the effective
number of parameters adapts automatically to the size of the data set.

For the moment, however, it is instructive to continue with the current approach
and to consider how in practice we can apply it to data sets of limited size where we

1.1. Example: Polynomial Curve Fitting 11

Table 1.2 Table of the coefficients w! for M =
9 polynomials with various values for
the regularization parameter λ. Note
that ln λ = −∞ corresponds to a
model with no regularization, i.e., to
the graph at the bottom right in Fig-
ure 1.4. We see that, as the value of
λ increases, the typical magnitude of
the coefficients gets smaller.

ln λ = −∞ lnλ = −18 lnλ = 0
w!

0 0.35 0.35 0.13
w!

1 232.37 4.74 -0.05
w!

2 -5321.83 -0.77 -0.06
w!

3 48568.31 -31.97 -0.05
w!

4 -231639.30 -3.89 -0.03
w!

5 640042.26 55.28 -0.02
w!

6 -1061800.52 41.32 -0.01
w!

7 1042400.18 -45.95 -0.00
w!

8 -557682.99 -91.53 0.00
w!

9 125201.43 72.68 0.01

the magnitude of the coefficients.
The impact of the regularization term on the generalization error can be seen by

plotting the value of the RMS error (1.3) for both training and test sets against lnλ,
as shown in Figure 1.8. We see that in effect λ now controls the effective complexity
of the model and hence determines the degree of over-fitting.

The issue of model complexity is an important one and will be discussed at
length in Section 1.3. Here we simply note that, if we were trying to solve a practical
application using this approach of minimizing an error function, we would have to
find a way to determine a suitable value for the model complexity. The results above
suggest a simple way of achieving this, namely by taking the available data and
partitioning it into a training set, used to determine the coefficients w, and a separate
validation set, also called a hold-out set, used to optimize the model complexity
(either M or λ). In many cases, however, this will prove to be too wasteful of
valuable training data, and we have to seek more sophisticated approaches.Section 1.3

So far our discussion of polynomial curve fitting has appealed largely to in-
tuition. We now seek a more principled approach to solving problems in pattern
recognition by turning to a discussion of probability theory. As well as providing the
foundation for nearly all of the subsequent developments in this book, it will also

Figure 1.8 Graph of the root-mean-square er-
ror (1.3) versus ln λ for the M = 9
polynomial.
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Mini Summary

• Overfitting vs underfitting

• Effect of regularisation on nonlinear regression
* Controls balance of over- vs underfitting
* Controlled in this case by the penalty hyperparameter

• Next: Bias-variance view for regression
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Bias-variance trade-off

Train error, test error and 
model complexity in 

supervised regression
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Assessing generalisation
• Supervised learning: train the model on existing data, 

then make predictions on new data

• Training the model: ERM / minimisation of training error

• Generalisation capacity is captured by risk / test error

• Model complexity is a major factor that influences the 
ability of the model to generalise (vague still)

• In this section, our aim is to explore error in the context 
of supervised regression. One way to decompose it.
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Training error and model complexity
• More complex model à training error goes down

• Finite number of points à usually can reduce 
training error to 0 (is it always possible?)

32

model complexity

Training 
error

𝑥

𝑦

What is this?
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(Another) Bias-variance decomposition
• Squared loss for supervised-regression predictions

𝑙 𝑌, ?𝑓 𝑿! = 𝑌 − ?𝑓 𝑿!
#

• Lemma: Bias-variance decomposition
𝔼 𝑙 𝑌, ,𝑓 𝑿$ = 𝔼 𝑌 − 𝔼 ,𝑓

"
+ 𝑉𝑎𝑟 ,𝑓 + 𝑉𝑎𝑟 𝑌

33

(bias)2 variance irreducible 
error

Risk /
test error 

for 𝒙$

* Prediction randomness comes from randomness in test features AND training data

Classification 
later on
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Decomposition proof sketch
• Here (𝒙) is omitted to de-clutter notation

• 𝔼 𝑌 − K𝑓
'
= 𝔼 𝑌' + K𝑓' − 2𝑌 K𝑓

• = 𝔼 𝑌' + 𝔼 K𝑓' − 𝔼 2𝑌 K𝑓

• = Var 𝑌 + 𝔼 𝑌 ' + Var K𝑓 + 𝔼 K𝑓
'
− 2𝔼 𝑌 𝔼 K𝑓

• = Var 𝑌 + Var K𝑓 + 𝔼 𝑌 ' − 2𝔼 𝑌 𝔼 K𝑓 + 𝔼 K𝑓
'

• = Var 𝑌 + Var K𝑓 + 𝔼 𝑌 − 𝔼 K𝑓
'

34

A key formula used here:
Var 𝑌 = 𝔼 𝑌" - 𝔼 𝑌 "
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Training data as a random variable

35
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Training data as a random variable

36
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Intuition: Model complexity and variance

• simple model è low variance

• complex model è high variance
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Intuition: Model complexity and variance

• simple model è high bias

• complex model è low bias
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Bias-variance trade-off
• simple model è high bias, low variance

• complex model è low bias, high variance

39

complex modelsimple model

(bias)2 variance

Test error
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Test error and training error

40

complex modelsimple model

Training 
error

Test error
Underfit L L Overfit

But how to measure 
model family complexity?
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Mini Summary
• Supervised regression: square-loss risk decomposes 

to bias, variance and irreducible terms

• This trade-off mirrors under/overfitting

• Controlled by “model complexity”
* But we’ve been vague about what this means!?

• Next lectures: Bounding generalisation error in ML
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