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This lecture

* How irrelevant features make optimisation ill-posed

* Regularising linear regression
* Ridge regression
* The lasso
* Connections to Bayesian MAP

* Regularising non-linear regression

* Bijas-variance
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Regularisation

Process of introducing additional information in order to
solve an ill-posed problem or to prevent overfitting

* Major technique & theme, throughout ML

* Addresses one or more of the following related problems
* Avoids ill-conditioning (a computational problem)
* Avoids overfitting (a statistical problem)
* |Introduce prior knowledge into modelling

* This is achieved by augmenting the objective function

* In this lecture: we cover the first two aspects. We will
cover more of regularisation throughout the subject




The Problem with
Irrelevant Features

Linear regression on rank-deficient data.
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Example 1: Feature importance

* Linear model on three features
* X is matrix on n = 4 instances (rows)
* Model: y = wix1 + wyx, + wixz + wy

Question: Which feature is
more important?

wl w2 w3
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Example 1: Feature importance

 Linear model on three features

* X is matrix on n = 4 instances (rows)
* Model: y = wix; + wyx, + waxz + wy

wl w2 w3
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Example 1: Irrelevant features

* Linear model on three features, first two same
* X is matrix on n = 4 instances (rows)
Model: y = wyxq + wyx, + Wix3 + wy

%
* First two columns of X identical
%

Feature 2 (or 1) is irrelevant
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* Linear model on three features, first two same
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Example 1: Irrelevant features

X is matrix on n = 4 instances (rows)
Model: y = wyxq + wyx, + Wix3 + wy
First two columns of X identical

Feature 2 (or 1) is irrelevant
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Problems with irrelevant features

I”

* |In example, suppose [W,, Wy, W,, W3]’ is “optima

* Forany é new [W,, w; + §,w, — §,W3]" get
* Same predictions!

* Same sum of squared errors!

* Problems this highlights
* The solution is not unique
* Lack of interpretability
* Optimising to learn parameters is ill-posed problem
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Irrelevant (co-linear) features in general

* Extreme case: features complete clones

* For linear models, more generally
* Feature X.j is irrelevant if
* X.j is a linear combination of other columns

X] — z .al X-l
=]

... for some scalars ;. Also called multicollinearity
* Equivalently: Some eigenvalue of X'X is zero

* Even near-irrelevance/colinearity can be problematic
* \/ small eigenvalues of X'X

* Not just a pathological extreme; easy to happen!

X.; denotes the j-th column of X

10
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Example 2: Lack of data

* Extreme example:

* Model has two
parameters (slope and
intercept)

* Only one data point

* Underdetermined system

11
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Ill-posed problems

In both examples, finding the best
parameters becomes an
ill-posed problem

This means that the problem
solution is not defined

* |n our case wy and w, cannot be
uniquely identified

Remember normal equations
solution of linear regression:

w=(X'X)"1X'y

With irrelevant/multicolinear
features, matrix X'X has no inverse

sum of squared
errors

1050510
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convex, but not
strictly convex
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Mini Summary

Irrelevant features as collinearity

Leads to
* |ll-posed optimisation for linear regression
* Broken interpretability

* Multiple intuitions: algebraic, geometric

* Next: Regularisation to the rescue!

13



Regularisation in
Linear Models

Ridge regression and the Lasso

14
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Re-conditioning the problem

* Regularisation: introduce an additional sum of squared

condition into the system w0505 errors
e The originazl problem is to minimise aeras K__A'—__-'
ly — Xwl|3 |
3e+0
* The regularised problem is to minimise .
ly — Xw||5 + A||w]||5 forA > 0 osth3
. . /‘—0,«—__- stable J w
* The solution is now 0§ g W2
w=XX+A)"Xy ﬁ i. Wy

e This formulation is called ridge regression
* Turns the ridge into a deep, singular valley strictly convex
* Adds A to eigenvalues of X'X: makes invertible

15
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Regulariser as a prior

* Without regularisation, parameters found based entirely
on the information contained in the training set X

** Regularisation introduces additional information

 Recall our probabilistic model Y = x'w + ¢
* Here Y and € are random variables, where € denotes noise

* Now suppose that w is also a random variable (denoted
as W) with a Normal prior distribution
W~N(0,1/1)
* |.e. we expect small weights and that no one feature dominates
* |s this always appropriate? E.g. data centring and scaling
* We could encode much more elaborate problem knowledge

16
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Computing posterior using Bayes rule

o>

* The prior is then used to compute the posterior

likelihood

p(yIX, w)p(w)

posterior

p(wW|X,y) =
p(yIX) marginal
likelihood

* Instead of maximum likelihood (MLE), take maximum a posteriori
estimate (MAP)

* Apply log trick, so that
log(posterior) = log(likelihood) + log(prior) — logamuarg)

this term doesn’t

* Arrive at the problem of minimising
affect optimisation

ly — Xwll3 + Allwll3
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Regulariser as a constraint

* For illustrative purposes, consider a modified problem:

minimise ||y — Xw||3 subject to |[w||5 < A for A > 0

Wy Solution to w2
linear regression

\ Contour lines of /

objective function

41

\ Regulariser defines /

feasible region

Ridge regression (||w/||3) Lasso (||w]|)

e Lasso (L, regularisation) encourages solutions to sit on the axes

- Some of the weights are set to zero = Solution is sparse 18
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Regularised linear regression

Algorithm Minimises Regulariser Solution
Linear 2 X'X)"'X'y
regression ly — Xwilz NS (if inverse exists)
L, norm
Ridge ly — Xwli2 + A[[w]]2 (X'X + D)Xy
regression z z
GaygSanm
AVev
V)
Ly norm No closed-form, but
3 5 solutions are sparse
Lasso ly = Xwllz + Allwll; and suitable for
Lﬂ ﬂo mCQ, high-dim data
/f)fY nh]
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Mini Summary

* L, regularisation: Ridge regression
* Re-conditions the optimisation
* Equivalent to MAP with Gaussian prior on weights

* L, regularisation: The Lasso

« Particularly favoured in high-dim, low-example regimes

* Next: Regularisation and non-linear regression

20



Regularisation in
Non-Linear Models

Model selection in ML

21
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Example regression problem

How complex a model should we use?

22
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Underfitting (linear regression)
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Model class ©® can be too simple to possibly fit true model.
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Overfitting (non-parametric smoothing)

Model class 0 can be so complex it can fit true model 4+ noise

24



COMP90051 Statistical Machine Learning

Actual model (xsin x)
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The right model class 0 will sacrifice some training error, for test error.
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Approach: Explicit model selection

* Try different classes of models. Example, try polynomial
models of various degree d (linear, quadratic, cubic, ...)

e Use held out validation (cross validation) to select the
model

1. Split training data into D¢y4i, and Dygiidate SES

2. For each degree d we have model f;
1. Train fz on Diygin
2. Test fd on Dvalidate

3. Pick degree d that gives the best test score

4. Re-train model f ; using all data

26



COMP90051 Statistical Machine Learning

Approach: Regularisation

* Augment the problem:

0 € argmin(L(data, 0) + AR (0))
e

* E.g., ridge regression

W € argmin|ly — Xw||3 + A||w]|3
weWw

* Note that regulariser R(0) does not depend on data

* Use held out validation/cross validation to choose 1

27
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Example: Polynomial regression

» 9th-grder polynomial regression

+* model of form
f=wo+wix+ ... +wyx®

+ regularised with A||w||5 term

wn
Z 05}
&

Training
Test

0
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Mini Summary

* Overfitting vs underfitting

 Effect of regularisation on nonlinear regression
* Controls balance of over- vs underfitting
* Controlled in this case by the penalty hyperparameter

* Next: Bias-variance view for regression

29
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Bias-variance trade-off

Train error, test error and
model complexity in
supervised regression

30
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Assessing generalisation

* Supervised learning: train the model on existing data,
then make predictions on new data

* Training the model: ERM / minimisation of training error

* Generalisation capacity is captured by risk / test error

* Model complexity is a major factor that influences the
ability of the model to generalise (vague still)

* | In this section, our aim is to explore error in the context
of supervised regression. One way to decompose it.

31
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Training error and model complexity

* More complex model = training error goes down

* Finite number of points = usually can reduce
training error to O (is it always possible?)

yA

Training
error

>
model complexity

What is this?

32
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(Another) Bias-variance decomposition

e Squared loss for supervised-regression predictions
. A 2
l(Y,f(Xo)) = (Y _f(Xo))

* Lemma: Bias-variance decomposition

E[1(Y, f(Xo))| = (ElY] - E[f])” + Var[f] + Var[Y]

Classification
later on

Risk / v : irreducible
(bias) variance
test error error
for X0

* Prediction randomness comes from randomness in test features AND training data
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Decomposition proof sketch

* Here (x) is omitted to de-clutter notation

+ E|(Y = /)| = E[y? + f7 - 2]

- = E[Y?] + E[f?] — E[2Yf]

« =Var|Y]+ Var

« = Varl|Y] + Var

f

f

+(myj

+ (E[Y]

- AN

« = Var[Y] + E[Y]* + Var|f

+E[f
2 _ 2

— E[f.

 _2E[Y]E

YIE[f] +E

)2

A key formula used here:
Var[Y] = E[Y?] - E[Y]?

1 D

1)
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Training data as a random variable

35
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Training data as a random variable

v
v
\4

36
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Intuition: Model complexity and variance

* simple model =» low variance

* complex model = high variance

v 1 v 1

37
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Intuition: Model complexity and variance

* simple model = high bias

* complex model = low bias

V1 y 1
°.
“‘""“."
h(xo) """ ?“‘.':“. © h(xO) ..... ‘T::.’".:.‘.‘.‘.‘”‘é“b
,
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Bias-variance trade-off

* simple model = high bias, low variance

* complex model =» low bias, high variance

Test error
variance

(bias)?

< >

simple model complex model

39
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Test error and training error

Test error
Underfit ® ® Overfit
Training
error
< >
simple model complex model

But how to measure
model family complexity?

40
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Mini Summary

* Supervised regression: square-loss risk decomposes
to bias, variance and irreducible terms

* This trade-off mirrors under/overfitting

* Controlled by “model complexity”

* But we've been vague about what this means!?

* Next lectures: Bounding generalisation error in ML

41



