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This lecture

• Probabilistic inference: computing (conditional) 
marginals from joint distributions
* Needed to learn (posterior update) in Bayesian ML
* Exact inference: Elimination algorithm
* Approximate inference: Sampling

• Statistical inference: Parameter estimation
* Fully observed case: Factors decompose under MLE
* Latent variables: Motivates the EM algorithm
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Probabilistic inference on PGMs

Computing marginal and conditional distributions from the 
joint of a PGM using Bayes rule and marginalisation.

This deck: how to do it efficiently.
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Two familiar examples

• Naïve Bayes (frequentist/Bayesian)
* Chooses most likely class given data

* Pr 𝑌|𝑋!, … , 𝑋" = #$ %,'!,…,'"
#$ '!,…,'"

= #$ %,'!,…,'"
∑# #$ %*+,'!,…,'"

• Data 𝑋|𝜃~𝑁 𝜃, 1 with prior 𝜃~𝑁 0,1 (Bayesian)
* Given observation 𝑋 = 𝑥 update posterior

* Pr 𝜃|𝑋 = #$ ,,'
#$ '

= #$ ,,'
∑$ #$ ,,'

• Joint + Bayes rule + marginalisation à anything

4

Y

X1 Xd
…

𝜃

X

Grace LIu



COMP90051 Statistical Machine Learning

Nuclear power plant

• Alarm sounds; meltdown?!

• Pr 𝐻𝑇 𝐴𝑆 = 𝑡 = #$ -., /0*1
#$(/0*1)

=
∑!", $", !% &' ()*+, -(, ./, -/, .0

∑!", $", !%, $&' &' ()*+, -(, .1, -/, .0
'

• Numerator (denominator similar)
expanding out sums, joint   summing once over 25 table

=#
-/
#

./
#

-(
Pr 𝐻𝑇 Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 Pr 𝐹𝐺 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺 Pr 𝐹𝐴

distributing the sums as far down as possible   summing over several smaller tables

= Pr 𝐻𝑇 #
-/
Pr 𝐹𝐺 #

./
Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 #

-(
Pr 𝐹𝐴 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺
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Grace LIu

Grace LIu

Grace Liu
In essence, the equation is saying: "To get the joint probability of a high temperature and the alarm sounding at a specific level t, sum up the probabilities over all possible scenarios of the faulty gauge, high gauge reading, and faulty alarm."
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Nuclear power plant (cont.)
= Pr 𝐻𝑇 ∑-/ Pr 𝐹𝐺 ∑./ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 ∑-(Pr 𝐹𝐴 Pr 𝐴𝑆 = 𝑡|𝐹𝐴,𝐻𝐺

= Pr 𝐻𝑇 ∑-/ Pr 𝐹𝐺 ∑./ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 ∑-(Pr 𝐹𝐴 𝑚() 𝐹𝐴,𝐻𝐺

= Pr 𝐻𝑇 ∑-/ Pr 𝐹𝐺 ∑./ Pr 𝐻𝐺|𝐻𝑇, 𝐹𝐺 𝑚-( 𝐻𝐺

= Pr 𝐻𝑇 ∑-/ Pr 𝐹𝐺 𝑚./ 𝐻𝑇, 𝐹𝐺

= Pr 𝐻𝑇 𝑚-/ 𝐻𝑇
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HT FG
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HT FG

HT FG

HT

eliminate AS: since AS observed, really a no-op

eliminate FA: multiplying 1x2 by 2x2

eliminate HG: multiplying 2x2x2 by 2x1

eliminate FG: multiplying 1x2 by 2x2

Multiplication
of tables, followed

by summing, is actually
matrix multiplication

FA
f t

0.6 0.4

HG
f t

FA
f 1.0 0
t 0.8 0.2

X𝑚!" 𝐻𝐺 =

Grace Liu
evidence node

Grace Liu
message

Grace Liu
Process of Elimination
1. eliminate evidence node
2. make FA and HG have a relation: message left by eliminating AS
3. eliminate FA, as it is not connected to other nodes
4. eliminate HG
5. eliminate FG
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Elimination algorithm
Eliminate (Graph 𝐺, Evidence nodes 𝐸, Query nodes 𝑄)

1. Choose node ordering 𝐼 such that 𝑄 appears last

2. Initialise empty list active

3. For each node 𝑋𝑖 in 𝐺
a) Append Pr 𝑋𝑖 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖)) to active

4. For each node 𝑋𝑖 in 𝐸
a) Append 𝛿(𝑋𝑖, 𝑥𝑖) to active

5. For each 𝑖 in 𝐼
a) potentials = Remove tables referencing 𝑋𝑖 from active

b) 𝑁𝑖 = nodes other than 𝑋𝑖 referenced by tables

c) Table 𝜙𝑖(𝑋𝑖, 𝑋(!) = product of tables

d) Table 𝑚𝑖 𝑋(! = ∑)! 𝜙𝑖(𝑋𝑖, 𝑋(!)

e) Append 𝑚𝑖(𝑋(!) to active

6. Return Pr(𝑋𝑄|𝑋𝐸 = 𝑥𝐸) = 𝜙𝑄(𝑋𝑄)/∑2*𝜙𝑄(𝑋𝑄)
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Grace LIu

Grace Liu
largest clique
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Runtime of elimination algorithm

• Each step of elimination
* Removes a node
* Connects node’s remaining neighbours

à forms a clique in the “reconstructed” graph
(cliques are exactly r.v.’s involved in each sum)

• Time complexity exponential in largest clique

• Different elimination orderings produce different cliques
* Treewidth: minimum over orderings of the largest clique
* Best possible time complexity is exponential in the treewidth e.g. O(2tw)
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PGM after successive eliminations “reconstructed” graph
From process called
moralisation
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HGFA

HT FG

Grace LIu

Grace Liu
For instance, if the largest clique has size k, the time complexity could be O(2^k)
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Mini Summary

(Exact) probabilistic inference on PGMs

• What? Marginalise out variables, Condition

• Why? Example: Bayesian posterior updates!

• How? The elimination algorithm

• How long? Time exponential in treewidth

Next time: Approximate PGM probabilistic inference 
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Grace LIu

Grace Liu
naive way: consider whole table?❌
✅：use elimination algorithm

Grace Liu
2^5 -> 2^3 in our example



COMP90051 Statistical Machine Learning

Probabilistic inference by simulation

• Exact probabilistic inference can be expensive/impossible
* Integration may not have analytical solution!

• Can we approximate numerically?

• Idea: sampling methods
* Approximate distribution by

histogram of a sample
* We can’t trivially sample: (1) only 

know desired distribution up to 
a (normalising) constant (2) naïve 
sampling approaches are inefficient in high dimensions.
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Grace LIu

Grace Liu
we want to obtain P(HT)
can we just simulate it? we can use the simulated node to get the distribution / or just use it. because in the end, we want to simulated it. cuz in the end we will perform the sampling
we want to directly sample from the query node
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Gibbs sampling

• Given: D-PGM on 𝑑 random variables
Given: evidence values 𝐱; over variables 𝐸 ⊂ {1,… , 𝑑}
Goal: many approximately independent samples from joint conditioned 
on 𝐱;

1. Initialise with a starting 𝐗(<) = 𝑋=
< , … , 𝑋>

< with 𝐗;
< = 𝐱;

2. Repeat many times
a) Pick non-evidence node 𝑋5 uniformly at random

b) Sample single node 𝑋56~𝑝 𝑋5|𝑋7
897 , … , 𝑋597

897 , 𝑋5:7
897 , … , 𝑋;

897

c) Save entire joint sample 𝐗(8) = 𝑋7
897 , … , 𝑋597

897 , 𝑋56, 𝑋5:7
897 , … , 𝑋;

897

• Exercise: Why always 𝐗;
? = 𝐱;? 

• Need not update nodes in random order, e.g. parents first order
But do need to be able to sample from conditionals (e.g. conjugacy)
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34
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Divide and conquer: Sampling single variable at a time.

Grace LIu

Grace Liu
evidence node

Grace Liu
randomly pick up point

Grace Liu
evidence node, give true sample value

Grace Liu
1,3,4,5: non-evidence node (randome pickup)

Grace Liu
sample from conditional distribution: because it is direct PGM

Grace Liu
subsititue to the new sample: we will use
the sampled node to update our data

Grace Liu

Grace Liu

Grace Liu
E represnets the evidence nodes, their values are observed and fixed

Grace Liu
conditional distribution is easier to obtain than joint dis

Grace LIu

Grace LIu

Grace LIu
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Markov blanket

• Intuition: all the nodes that you directly depend on.
Not just your parents/children!

• Consider node 𝑋) in D-PGM on nodes 𝑁 = {1,… , 𝑑}

• Markov blanket MB(𝑖) of 𝑋-:
* Nodes 𝐵 ⊆ 𝑁\{𝑖} such that… 
* 𝑋? independent of 𝐗 @A\{?} given 𝐗A
* 𝑝 𝑋4 | 𝑋!, … , 𝑋45!, 𝑋46!, … , 𝑋" = 𝑝 𝑋4 | MB 𝑋4

• In D-PGM Markov blanket is:
* Parents of 𝑖, children of 𝑖, parents of children of 𝑖
* 𝑝 𝑋? | MB 𝑋? ∝ 𝑝 𝑋?|𝑋E# ∏F:?∈E$ 𝑝 𝑋F|𝑋E$
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public domain

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu

Grace Liu
if we find markov blanket: we find the conditional prob of Xi and we can use gibbs sampling 
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Markov Chain Monte Carlo (MCMC)
• Gibbs sampling produces a chain of samples 𝐗(!), 𝐗(7), … approximating

draws from 𝑝 𝐗 89|𝐗9 = 𝐱9

• How good an approximation? Independent draws possible?

• Samples form a Markov chain: Each 𝐗(4) depends only 𝐗(45!)
* States are all possible values taken by joint samples
* Initial distribution 𝐩3 of state 𝐗(3) given by initialisation process
* Transition probability matrix 𝐓 given by PGM conditional probabilities
* Combines to: distribution 𝐩6 = 𝐓 6𝐩3 of state 𝐗(6).

• Burn in: Run Gibbs long enough and 𝐗(4)~𝑝 𝐗 89|𝐗9 = 𝐱9
* “Limiting distribution” lim

6→8
𝐩6 is 𝑝 𝐗 9:|𝐗: = 𝐱: under condition

that no entry of 𝐓 is zero (“ergodicity” – may not always hold)
* Solution: throw away first few thousand samples

• Thinning: Want saved full samples to be independent
* Neighbouring 𝐗(6), 𝐗(6;<) are highly correlated. Intuition why?
* Solution: only keep every 100 or so samples
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public domain

Grace Liu
key advantage: we don’t reject any sample in gibbs sampling

Grace LIu

Grace LIu
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Initialising Gibbs: Forward Sampling

• Set all evidence nodes to observed values

• Remaining nodes, parent-first order
* Node has no parents? Sample from its D-PGM marginal
* Sample node given previously sampled parents

• However Markov chain theory tells us MCMC 
converges irrespective of initial sample’s distribution
* The limiting distribution – the “equilibrium distribution” –

is a property of the transition matrix (the PGM’s joint) not 
the initial distribution

14

Grace LIu

Grace Liu
MCMC can start with any sample will always converge to the sample we desired
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Now what??

• With our 𝐗(+), … , 𝐗(-) in hand after running Gibbs for a 
while with burn-in and thinning…

• These form “i.i.d.” sample of 𝑝 𝐗 ./|𝐗/ = 𝐱/
• We can do heaps!

a) Can approximate the distribution via a histogram of these 
samples (make bins, form counts).

b) Marginalising out variables == Dropping components from 
samples

c) Expectations: Estimating by sample mean of samples

• Posterior 𝑝 𝐰|𝐗01 , 𝐲01 combine (a) and (b)
Mean posterior point estimate, combine with (c)
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Mini Summary

Approximate probabilistic inference on PGMs

• Why? Summation/integration may be costly

• Why? Integration may be impossible analytically

• Briefly: Gibbs sampling

Next time: Statistical inference on PGMs
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Statistical inference on PGMs

Learning from data – fitting probability tables to 
observations (eg as a frequentist; a Bayesian would just 
use probabilistic inference to update prior to posterior)
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Have PGM, Some observations, No tables…
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ASi

HGiFAi

HTi FGi

i=1..n

False ?

True ?

False ?

True ?

False ?

True ?

HT false true

FG f t f t

False ? ? ? ?

True ? ? ? ?
FA false true

HG f t f t

False ? ? ? ?

True ? ? ? ?



COMP90051 Statistical Machine Learning

Fully-observed case is “easy”

• Max-Likelihood Estimator (MLE) says
* If we observe all r.v.’s 𝑿 in a PGM

independently 𝑛 times 𝒙𝑖
* Then maximise the full joint 
argmax

=∈?
∏6*<
@ ∏A 𝑝 𝑋𝑗 = 𝑥6

A|𝑋BCDE@+F A = 𝑥6BCDE@+F A

• Decomposes easily, leads to counts-based estimates
* Maximise log-likelihood instead; becomes sum of logs
argmax

=∈?
∑6*<@ ∑A log 𝑝 𝑋𝑗 = 𝑥6

A|𝑋BCDE@+F A = 𝑥6BCDE@+F A

* Big maximisation of all parameters together,
decouples into small independent problems

• Example is training a naïve Bayes classifier
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Grace LIu

Grace Liu
max the prob that given the param, what is the prob we observe the data point we have

Grace Liu
decompose table: things will be easier!
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Example: Fully-observed case
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ASi

HGiFAi

HTi FGi

i=1..n

false ?

true ?

false ?

true ?

false ?

true ?

FA false true

HG f t f t

false ? ? ? ?

true ? ? ? ?

HT false true

FG f t f t

false ? ? ? ?

true ? ? ? ?

# 𝒙𝒊|𝑭𝑮𝒊 = 𝒕𝒓𝒖𝒆
𝒏

# 𝒙𝒊|𝑭𝑮𝒊 = 𝒇𝒂𝒍𝒔𝒆
𝒏

# 𝒙𝒊|𝑯𝑮𝒊 = 𝒕𝒓𝒖𝒆,𝑯𝑻𝒊 = 𝒇𝒂𝒍𝒔𝒆, 𝑭𝑮𝒊 = 𝒇𝒂𝒍𝒔𝒆
# 𝒙𝒊|𝑯𝑻𝒊 = 𝒇𝒂𝒍𝒔𝒆, 𝑭𝑮𝒊 = 𝒇𝒂𝒍𝒔𝒆

Grace Liu
consider FG is false
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Presence of unobserved variables trickier

• But most PGMs you’ll encounter will have latent, or 
unobserved, variables

• What happens to the MLE?
* Maximise likelihood of observed data only
* Marginalise full joint to get to desired “partial” joint
* argmax

,∈<
∏4*!
= ∑>?@AB@ C∏C 𝑝 𝑋𝑗 = 𝑥4C|𝑋DEFG=1H C = 𝑥4DEFG=1H C

* This won’t decouple – oh-no’s!!

à Use EM algorithm!
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Grace LIu

Grace Liu
we don’t have observation for random variable, hence we need to marginalise them and then use MLE
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Summary

• Probabilistic inference on PGMs
* What is it and why do we care?
* Elimination algorithm; complexity via cliques
* Monte Carlo approaches as alternate to exact integration

• Statistical inference on PGMs
* What is it and why do we care?
* Straight MLE for fully-observed data
* EM algorithm for mixed latent/observed data

Next time: deeper dive into HMMs and more
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