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This lecture

• PAC learning bounds:
* Countably infinite case works as we’ve done so far
* General infinite case? Needs new ideas!

• Growth functions for the general PAC case
* Considering patterns of labels possible on a data set
* Gives good PAC bounds provided possible patterns don’t grow too fast 

in the data set size

• Vapnik-Chervonenkis (VC) dimension
* Max number of points that can be labelled in all ways
* Beyond this point, growth function is polynomial in data set size
* Leads to famous, general PAC bound from VC theory

• Optional proofs at end (just for fun)
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Countably infinite ℱ?
• Hoeffding gave us for a single 𝑓 ∈ ℱ

Pr 𝑅 𝑓 − (𝑅 𝑓 ≥
log !

" #
2𝑚

≤ 𝛿 𝑓

…where we’re free to choose (varying) 𝛿 𝑓 in [0,1].

• Union bound “works” (sort of) for this case 

Pr ∃𝑓 ∈ ℱ, 𝑅 𝑓 − (𝑅 𝑓 ≥
log !

" #
2𝑚

≤7
#∈ℱ

𝛿 𝑓

• Choose confidences to sum to constant 𝛿, then this works
* E.g. 𝛿 𝑓 = 𝛿 $ 𝑝 𝑓 where 1 = ∑!∈ℱ 𝑝 𝑓

• By inversion: w.h.p 1 − 𝛿, for all 𝑓, 𝑅 𝑓 ≤ (𝑅 𝑓 +
&'( $

% & ) &'( $
'

*+
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Try this 
for finite ℱ with 

uniform 𝑝 𝑓

Josh Staiger (CCA2.0)
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Ok fine, but general case?

• Much of ML has continuous parameters
* Countably infinite covers only discrete parameters L

• Our argument fails! LL
* 𝑝 𝑓 becomes a density
* Its zero for all 𝑓. No divide by zero!
* Need a new argument!

• Idea introduced by VC theory: intuition
* Don’t focus on whole class ℱ as if each 𝑓 is different
* Focus on differences over sample 𝑍!, … , 𝑍"
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Mini Summary

• Can seek out PAC bounds on countably infinite 
families using Hoeffding bound + union bound

• No good for general (uncountably infinite) cases

• Need another fundamentally new idea

Next: Organising analysis around patterns of labels 
possible on a data set, to avoid wort-case bad events
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Growth Function

6

Focusing on the size of model families 
on data samples
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Bad events: Unreasonably worst case?
• Bad event ℬ# for model 𝑓#

𝑅 𝑓, − (𝑅 𝑓, ≥ 𝜀 with probability ≤ 2exp −2𝑚𝜀*

• Union bound: bad events don’t overlap!?
Pr ℬ! or…or ℬ ℱ ≤ Pr ℬ! +⋯+ Pr ℬ ℱ ≤ 2 ℱ exp −2𝑚𝜀*
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Ω

ℬ!

ℬ" ℬ#

Tight bound: No overlaps

Ω

Loose bound: Overlaps

ℬ!

ℬ" ℬ#
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How do overlaps arise?
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-1 +1

true
error

true
error

𝑓!𝑓&
Whole of population

-1 +1

𝑓!𝑓&
On a sample

Significantly overlapping events ℬ! and ℬ&
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How do overlaps arise?
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VC theory focuses on the pattern of labels any 𝑓 ∈ ℱ could make

𝑓! 𝑓"

𝑓$𝑓#
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Dichotomies and Growth Function

• Definition: Given sample 𝑥!, … , 𝑥" and family ℱ, a dichotomy is a 
𝑓 𝑥! , … , 𝑓 𝑥" ∈ −1,+1 " for some 𝑓 ∈ ℱ.

• Unique dichotomies ℱ 𝐱 = 𝑓 𝑥! , … , 𝑓 𝑥" ∶ 𝑓 ∈ ℱ , patterns 
of labels possible with the family

• Even when ℱ infinite, ℱ 𝐱 ≤ 2" (why?)

• And also (relevant for ℱ finite, tiny), ℱ 𝐱 ≤ ℱ (why?)

• Intuition: ℱ 𝒙 might replace ℱ in union bound? How remove x?

• Definition: The growth function 𝑆ℱ 𝑚 = sup𝐱∈𝒟% ℱ 𝐱 is the 
max number of label patterns achievable by ℱ for any 𝑚 sample.
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𝑆ℱ 3 for ℱ linear classifiers in 2D?
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𝑆ℱ 3 = 8



COMP90051 Statistical Machine Learning

𝑆ℱ 3 for ℱ linear classifiers in 2D?

12

X
X

ℱ 𝐱 = 6
but still have 
𝑆ℱ 3 = 8
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• What about 𝑚 = 4 points?

• Can never produce the criss-cross (XOR) dichotomy

• In fact 𝑆ℱ 4 = 14 < 2"

• Guess/exercise: What about general 𝑚 and dimension?

𝑆ℱ 4 for ℱ linear classifiers in 2D?

13



COMP90051 Statistical Machine Learning

PAC Bound with Growth Function

• Theorem: Consider any 𝛿 > 0 and any class ℱ. Then w.h.p. at 
least 1 − 𝛿: For all 𝑓 ∈ ℱ

𝑅 𝑓 ≤ 7𝑅 𝑓 + 2 2
log 𝑆ℱ 2𝑚 + log 4/𝛿

𝑚

• Proof: out of scope (“only” 2-3pgs), optional reading.

• Compare to PAC bounds so far
* A few negligible extra constants (the 2s, the 4)
* |ℱ| has become 𝑆ℱ 2𝑚
* 𝑆ℱ 𝑚 ≤ |ℱ|, not “worse” than union bound for finite ℱ
* 𝑆ℱ 𝑚 ≤ 2+, very bad for big family with exponential growth function 

gets 𝑅 𝑓 ≤ (𝑅 𝑓 + 𝐵𝑖𝑔 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Even 𝑅 𝑓 ≤ (𝑅 𝑓 + 1meaningless!!
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Mini Summary

• The previous PAC bound approach that organises bad events by model and 
applies uniform bound is only tight if bad events are disjoint

• In reality some models generate overlapping bad events

• Better to organise families by possible patterns of labels on a data set: the 
dichotomies of the family

• Counting possible dichotomies gives the growth function

• PAC bound with growth function potentially tackles general (uncountably 
infinite) families provided growth function is sub-exponential in data size

Next: VC dimension for a computable bound on growth functions, with the 
polynomial behaviour we need! Gives our final, general, PAC bound
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The VC dimension

16

Computable, bounds growth function
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Vapnik-Chervonenkis dimension

• Definition: The VC dimension VC(ℱ) of a family ℱ is 
the largest 𝑚 such that 𝑆ℱ 𝑚 = 2L.
* Points 𝐱 = 𝑥!, … , 𝑥" are shattered by ℱ if ℱ 𝐱 = 2"

* So VC(ℱ) is the size of the largest set shattered by ℱ

• Example: linear classifiers in ℝM, VC ℱ = 3

• Guess: VC-dim of linear classifiers in ℝN?

17

Shattered Not shattered



COMP90051 Statistical Machine Learning

Example: VC(ℱ) from ℱ 𝐱 on whole domain?
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𝑥! 𝑥" 𝑥# 𝑥$
0 0 0 0
0 1 1 0
1 0 0 1
1 1 0 1
0 1 0 0
1 0 1 0
1 1 1 1
0 0 1 1
0 1 0 1
1 1 1 0

• Columns are all points in domain

• Each row is a dichotomy on entire input domain

• Obtain dichotomies on a subset of points 
𝐱′ ⊆ 𝑥!, … , 𝑥$ by: drop columns, drop dupe rows

• ℱ shatters 𝐱′ if number of rows is 2|𝐱!|

𝑥( 𝑥) 𝑥*
0 0 0
0 1 0
1 0 1
1 1 1
0 1 0
1 0 0
1 1 1
0 0 1
0 1 1
1 1 0

This example:

• Dropping column 3 
leaves 8 rows behind: 
ℱ shatters {𝑥!, 𝑥", 𝑥$}

• Original table has
< 2$ rows: ℱ doesn’t 
shatter more than 3

• VC ℱ = 3Note we’re using labels {0,1} 
instead of {-1,+1}. Why OK?
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Sauer-Shelah Lemma

• Lemma (Sauer-Shelah): Consider any ℱ with finite VC ℱ = 𝑘, 
any sample size 𝑚. Then 𝑆ℱ 𝑚 ≤ ∑#789 𝑚

𝑖 .

• From basic facts of Binomial coefficients
* Bound is O(𝑚-): finite VC ⇒ eventually polynomial growth!

* For 𝑚 ≥ 𝑘, it is bounded by +,
-

-

• Theorem (VC bound): Consider any 𝛿 > 0 and any VC-𝑘 class ℱ.
Then w.h.p. at least 1 − 𝛿: For all 𝑓 ∈ ℱ

𝑅 𝑓 ≤ 7𝑅 𝑓 + 2 2
𝑘 log &:"9 + log ;<

𝑚

19



COMP90051 Statistical Machine Learning

VC bound big picture

• (Uniform) difference between 𝑅 𝑓 , 6𝑅 𝑓 is O ( )*+ "
"

down from ∞

• Limiting complexity of ℱ leads to better generalisation
• VC dim, growth function measure “effective” size of ℱ
• VC dim doesn’t count functions, but uses geometry of family: projections 

of family members onto possible samples
• Example: linear “gap-tolerant” classifiers (like SVMs) with “margin” ∆

have VC = O(1/∆,). Maximising “margin” reduces VC-dimension.
20

log 𝑆ℱ(𝑚)

𝑚VC(ℱ)
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Mini Summary

• VC-dim is the largest set size shattered by a family
* It is 𝑑 + 1 for linear classifiers in ℝ-
* Can calculate it on entire-domain dichotomies of a family by 

dropping columns and counting unique rows

• Sauer-Shelah: The growth function grows only 
polynomially in the set size beyond the VC-dim

• As a result, VC PAC bounds uniform risk and empirical risk 
deviation by O (VC(ℱ) log𝑚)/𝑚

Next: Two selected proofs. Optional but beautiful.
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Two Selected Proofs

22

Green slides: Not examinable.
Food for thought. Soul food.
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Linear classifiers in 𝑑-dim: VC ℱ ≥ 𝑑 + 1
• Goal: construct 𝑚 = 𝑑 + 1 specific points in ℝD that are 

shattered by the linear classifier family

• Data in rows of 𝐗 =

1 0 0 … 0
1 1 0 … 0
1
⋮
1

0
⋮
0

1
⋮
0

…
⋱
…

0
⋮
1

is invertible!

• Any dichotomy 𝑦 ∈ {−1,1}DE!, need 𝐰 with sign 𝐗𝐰 = 𝐲

• 𝐰 = 𝐗F!𝐲 works!! sign 𝐗𝐰 = sign 𝐗𝐗F!𝐲 = sign 𝐲 = 𝐲

• We’ve shown that ℱ can shatter 𝑑 + 1 points: VC ℱ ≥ 𝑑 + 1
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Linear classifiers in 𝑑-dim: VC ℱ ≤ 𝑑 + 1

• Goal: cannot shatter any set of 𝑑 + 2 points

• Any 𝐱!, … , 𝐱DE&, have more pts than dims: linear dependent

𝐱G = ∑#HG 𝑎#𝐱# ,      for some 𝑗, where not all 𝑎#’s are zero

• Possible dichotomy 𝐲?       𝑦# = X
sign(𝑎#), if 𝑖 ≠ 𝑗
−1, if 𝑖 = 𝑗

* Suppose 𝐰 generated 𝑖 ≠ 𝑗:   sign 𝑎, = sign(𝐰′𝐱,) so   𝑎,𝐰′𝐱, > 0
* Can 𝐰 generate 𝑖 = 𝑗??
* 𝐰.𝐱/ = 𝐰.∑,0/ 𝑎,𝐱, = ∑,0/ 𝑎,𝐰.𝐱, > 0 so  sign 𝐰.𝐱/ ≠ 𝑦,

• We’ve shown VC ℱ < 𝑑 + 2, in other words VC ℱ = 𝑑 + 1
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Proof of Sauer-Shelah Lemma (by Haussler ’95)

• To show that growth function 𝑆ℱ 𝑚 ≤ ∑./0( 𝑚
𝑖 we prove the bound 

for any dichotomies ℱ 𝑥!, … , 𝑥" since ℱ 𝑥!, … , 𝑥" ≤ 𝑆ℱ 𝑚

• Write 𝐘 = ℱ 𝑥!, … , 𝑥" ⊆ {0,1}", where −1 → 0.

• Definition: Consider any column 1 ≤ 𝑖 ≤ 𝑚 and dichotomy 𝐲 ∈ 𝐘. The 
shift operator 𝐻.(𝐲; 𝐘) returns 𝐲 if there exists some 𝐲′ ∈ 𝐘 differing 
to 𝐲 only in the 𝑖th coordinate; otherwise it returns 𝐲 with 𝑦. = 0. 
Define 𝐻. 𝐘 = 𝐻. 𝐲; 𝐘 ∶ 𝐲 ∈ 𝐘 the shifting all dichotomies.

* Intuition: Shifting along a column drops a +1 to 0 in that column so long as 
now other row would become duplicated.

• Definition: A set of dichotomies 𝐕 ⊆ {0,1}" is called closed below if 
for all 1 ≤ 𝑖 ≤ 𝑚, shifting does nothing 𝐻. 𝐕 = 𝐕.

* Intuition: Every 𝐯 ∈ 𝐕 has, for every 1 ≤ 𝑖 ≤ 𝑚 for which 𝑣! = 1, some 𝐮 ∈ 𝐕
the same as 𝐯 except with 𝑢! = 0.
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Proof of Sauer-Shelah Lemma (by Haussler ’95)

• Example set of 6 unique dichotomies on 𝑚 = 3 pts with VC=2

26

𝐱!

𝐱"

𝐱#𝑥! 𝑥" 𝑥#
0 0 0
0 1 1
1 0 0
1 1 0
1 0 1
1 1 1

𝐱!

𝐱"

𝐱#

Shift down along 𝑖 = 1

𝐱!

𝐱"

𝐱#

Shift down along 𝑖 = 2

𝐱!

𝐱"

𝐱#

Closed below
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Proof of Sauer-Shelah Lemma (by Haussler ’95)
• Goal: show that (1) shifting almost maintains VC dimension and cardinality 

all the way to a closed-below end, (2) closed-below sets have the desired 
Sauer-Shelah bound

• Shifting property 1:   𝐻. 𝐘 = 𝐘 for any 𝐘.
* Proof: no two dichotomies in 𝐘 shift to the same dichotomy

• Shifting property 2:    VC(𝐻. 𝐘 ) ≤ VC(𝐘) for any 𝑖, 𝐘.
* Proof sketch: If 𝐻! 𝐘 shatters a subset of points, then so too does 𝐘

• Shifting property 3: if 𝐘 is closed below, then all dichotomies 𝐲 ∈ 𝐘 have 
at most VC 𝐘 -many 𝑦. = 1 (the rest 0).
* Therefore: 𝐘 ≤ "

# + "
$ +⋯+ "

%& 𝐘 by counting
* Proof sketch: if a 𝐲 ∈ 𝐘 had more 1s, all combinations would exist “below”

• Together: exists a shift sequence 𝑖!, … , 𝑖1 to a closed below 𝐻.) 𝐘 :   

𝐘 = 𝐻.* 𝐘 = ⋯ = 𝐻.) 𝐘 ≤ ∑./0
23 4+) 𝐘 "

. ≤ ⋯ ≤ ∑./0
23 𝐘 "

.
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Mini Summary

28

• Linear classifiers in ℝN have VC dimension 𝑑 + 1
* Lower bound VC-dim with specific points that are shattered
* Upper bound VC-dim by lin. dependence of any 𝑑 + 2 points

• Sauer-Shelah lemma bounds a family’s growth function 
by a polynomial in VC dimension.
* Ingenious shifting operator transforms sets of dichotomies 

into boundable closed-below sets
* Along the way keeps cardinality and VC-dim controlled

Next time: Support vector machines


