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This lecture

e Undirected PGMs and conversion from D-PGMs

* Undirected PGM formulation
* Directed to undirected
* Why U-PGM

 Example PGMs, applications
* HMMs (and Kalman Filter)
* Applications
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Undirected PGMs

Undirected variant of PGM, parameterised by
arbitrary positive valued functions of the variables,
and global normalisation.

A.k.a. Markov Random Field.
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Undirected vs directed

Undirected PGM Directed PGM
* Graph * Graph
** Edges undirected * Edged directed
* Probability * Probability
* Each node a r.v. * Each node ar.v.
** Each clique C has “factor” * Each node has conditional
LI)C(Xj:j € C) >0 p(Xi|Xj € parents(Xl-))
* Joint &« product of factors * Joint = product of cond’ls

Key difference = normalisation
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Undirected PGM formulation

* Based on notion of ‘ MC G
% : a set of fully connected
nodes (e.g., A-D, C-D, C-D-F) 6 G
% : largest cliques in
graph (not C-D, due to C-D-F) ‘ ‘
* Joint probability defined as MC

P(CL, bv C, da €, f) — %wl (av b)¢2(bv C)%(a» d)wil(da C, f)¢5 (d7 6)

* where each ¢ is a positive function and Z is the
normalising

Z= Y i(a,b)a(b, c)ts(a, d)s(d,c, f)s(d, e)

a7b7c7d7e7f
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Directed to undirected

 Directed PGM formulated as

P(X1,Xa,..., X)) = || Pr(Xi|Xx,)
1=1
where Tt indexes parents.
* Equivalent to U-PGM with

 each conditional probability term is included in one factor
function, .

 clique structure links groups of variables, i.e., {{Xi} U Xx,, Vi}
* normalisation term trivial, Z=1
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1. copy nodes
2. copy edges, undirected

3. ‘moralise’ parent nodes

Pr(AS|FA, GRL)
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Why U-PGM?

°* Pros

 generalisation of D-PGM

* simpler means of modelling without the need for per-
factor normalisation

* general inference algorithms use U-PGM representation
(supporting both types of PGM)

e Cons

« (slightly) weaker independence
* calculating global normalisation term (Z) intractable in

general (but tractable for chains/trees, e.g., CRFs)
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Mini Summary

Undirected probabilistic graphical models (U-PGMs)
* Definition
* Conversion to D-PGMs

* Pros/Cons over D-PGMs

Next: Examples and applications of PGMs
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Example PGMs

The hidden Markov model (HMM ),
lattice Markov random field (MRF);

Conditional random field (CRF)
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The HMM (and Kalman Filter)

* Sequential observed outputs from hidden state

5%

A={a;;} transition probability matrix; Vi : . a;; =1
B = {bi(or)} output probability matrix; Vi : ), bi(or) = 1
=} the initial state distribution; Y .7 =1

e The Kalman filter same with continuous Gaussian r.v.s

» A CRFis the (01 (0,
undirected analogue -

e )—e)—) «
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HMM Applications

NLP — part of speech tagging: given words in sentence,
infer hidden parts of speech

“| love Machine Learning” = noun, verb, noun, noun

Speech recognition: given waveform, determine

phonemes |
oo o s

Biological sequences: classification, search, alignment

Computer vision: identify who's walking in video, tracking
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Fundamental HMM Tasks

HMM Task PGM Task

Evaluation. Given an HMM u and

observation sequence 0, determine
likelihood Pr(0|u)

Decoding. Given an HMM u and
observation sequence 0, determine most
probable hidden state sequence Q

Learning. Given an observation sequence O
and set of states, learn parameters A, B, I1

Probabilistic
inference

MAP point
estimate

Statistical
inference
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Pixel labelling tasks in Computer Vision

sky

bldg

foreground

Semantic labelling (Gould et al. 09)

Interactive figure-ground segmentation (Boykov & Jolly 2011) Denoising (Felzenszwalb & Huttenlocher 04)
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What these tasks have in common

* Hidden state representing semantics of image

* Semantic labelling: Cow vs. tree vs. grass vs. sky vs. house
* Fore-back segment: Figure vs. ground
* Denoising: Clean pixels

* Pixels of image

* What we observe of hidden state

 Remind you of HMMs? @ @ @
(or)
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A hidden square-lattice Markov random field

e Hidden states:

square-lattice model % q} %
* Boolean for s nliE V) ' S ---
= Q(\ ._

two-class
states

+* Discrete for
multi-class

* Continuous

for denoising " ( 2
* Pixels: observed outputs \>

* Continuous e.g. Normal
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Application to sequences: CRFs

* Conditional Random Field: Same model applied to
sequences
** observed outputs are words, speech, amino acids etc
* states are tags: part-of-speech, phone, alignment...

* CRFs are discriminative, model P(Q/O)
* versus HMM'’s which are generative, P(Q,0)
* undirected PGM more general and expressive

(o @

z 2/ \&/ G
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Summary

* Probabilistic graphical models
* Motivation: applications, unifies algorithms
* Motivation: ideal tool for Bayesians
* Independence lowers computational/model complexity

* PGMSs: compact representation of factorised joints
* U-PGMs

 Example PGMs and applications

Next time: elimination for probabilistic inference
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