Lecture 21. PGM Representation II

COMP90051 Statistical Machine Learning

Lecturer: Feng Liu

This lecture

- Undirected PGMs and conversion from D-PGMs
 - * Undirected PGM formulation
 - Directed to undirected
 - * Why U-PGM
- Example PGMs, applications
 - * HMMs (and Kalman Filter)
 - * Applications

Undirected PGMs

Undirected variant of PGM, parameterised by arbitrary positive valued functions of the variables, and global normalisation.

A.k.a. Markov Random Field.

Undirected vs directed

Undirected PGM

- Graph
 - Edges undirected
- Probability
 - * Each node a r.v.
 - * Each clique C has "factor" $\psi_C(X_j: j \in C) \ge 0$
 - * Joint ∝ product of factors

Directed PGM

- Graph
 - * Edged directed
- Probability
 - * Each node a r.v.
 - * Each node has conditional $p(X_i|X_i \in parents(X_i))$
 - * Joint = product of cond'ls

Key difference = normalisation

Undirected PGM formulation

- Based on notion of
 - * Clique: a set of fully connected nodes (e.g., A-D, C-D, C-D-F)
 - * Maximal clique: largest cliques in graph (not C-D, due to C-D-F)
- Joint probability defined as

MC

* where each ψ is a positive function and Z is the normalising 'partition' function

$$Z = \sum_{a,b,c,d,e,f} \psi_1(a,b)\psi_2(b,c)\psi_3(a,d)\psi_4(d,c,f)\psi_5(d,e)$$

Directed to undirected

Directed PGM formulated as

$$P(X_1, X_2, \dots, X_k) = \prod_{i=1}^k Pr(X_i | X_{\pi_i})$$

where π indexes parents.

- Equivalent to U-PGM with
 - * each conditional probability term is included in one factor function, $\psi_{\rm c}$
 - * clique structure links *groups of variables,* i.e., $\{\{X_i\} \cup X_{\pi_i}, \forall i\}$
 - normalisation term trivial, Z = 1

1. copy nodes

2. copy edges, undirected

3. 'moralise' parent nodes

Why U-PGM?

Pros

- * generalisation of D-PGM
- simpler means of modelling without the need for perfactor normalisation
- general inference algorithms use U-PGM representation (supporting both types of PGM)

Cons

- (slightly) weaker independence
- calculating global normalisation term (Z) intractable in general (but tractable for chains/trees, e.g., CRFs)

Mini Summary

Undirected probabilistic graphical models (U-PGMs)

- Definition
- Conversion to D-PGMs
- Pros/Cons over D-PGMs

Next: Examples and applications of PGMs

Example PGMs

The hidden Markov model (HMM); lattice Markov random field (MRF); Conditional random field (CRF)

The HMM (and Kalman Filter)

Sequential observed outputs from hidden state

$$A = \{a_{ij}\}$$

$$B = \{b_i(o_k)\}$$

$$\Pi = \{\pi_i\}$$

transition probability matrix; $\forall i: \sum_j a_{ij} = 1$ output probability matrix; $\forall i: \sum_k b_i(o_k) = 1$ the initial state distribution; $\sum_i \pi_i = 1$

- The Kalman filter same with continuous Gaussian r.v.'s
- A CRF is the undirected analogue

HMM Applications

 NLP – part of speech tagging: given words in sentence, infer hidden parts of speech

"I love Machine Learning" -> noun, verb, noun, noun

Speech recognition: given waveform, determine phonemes

- Biological sequences: classification, search, alignment
- Computer vision: identify who's walking in video, tracking

Fundamental HMM Tasks

HMM Task	PGM Task
Evaluation. Given an HMM μ and observation sequence O , determine likelihood $\Pr(O \mu)$	Probabilistic inference
Decoding. Given an HMM μ and observation sequence O , determine most probable hidden state sequence Q	MAP point estimate
Learning. Given an observation sequence O and set of states, learn parameters A, B, Π	Statistical inference

Pixel labelling tasks in Computer Vision

Semantic labelling (Gould et al. 09)

Interactive figure-ground segmentation (Boykov & Jolly 2011)

Denoising (Felzenszwalb & Huttenlocher 04)

What these tasks have in common

- Hidden state representing semantics of image
 - * Semantic labelling: Cow vs. tree vs. grass vs. sky vs. house
 - Fore-back segment: Figure vs. ground
 - * Denoising: Clean pixels
- Pixels of image
 - * What we observe of hidden state
- Remind you of HMMs?

A hidden square-lattice Markov random field

Hidden states: square-lattice model

Boolean for two-class states

Discrete for multi-class

Continuous for denoising

- Pixels: observed outputs
 - Continuous e.g. Normal

Application to sequences: CRFs

- Conditional Random Field: Same model applied to sequences
 - observed outputs are words, speech, amino acids etc
 - * states are tags: part-of-speech, phone, alignment...
- CRFs are discriminative, model P(Q/O)
 - versus HMM's which are generative, P(Q,O)
 - undirected PGM more general and expressive

Summary

- Probabilistic graphical models
 - Motivation: applications, unifies algorithms
 - Motivation: ideal tool for Bayesians
 - Independence lowers computational/model complexity
 - PGMs: compact representation of factorised joints
 - * U-PGMs
- Example PGMs and applications

Next time: elimination for probabilistic inference