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Convolutional Neural Networks

CNNs, as you’ve seen are

1. Flexible
2. Computationally

Efficient
3. Expressive
4. Give great results.
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The Dark Side of CNNs

But what is assumed when you use a CNN?
The data should be:
1. Regular
2. Dense (or non–sparse)
3. Have some local relational properties
4. Consistent
5. Suitable for taking layers of filtering

3/31



The Dark Side of CNNs

But what is assumed when you use a CNN?
The data should be:
1. Regular
2. Dense (or non–sparse)
3. Have some local relational properties
4. Consistent
5. Suitable for taking layers of filtering

3/31



Breaking these assumptions?
What happens if these assumptions don’t hold?
You can always try to map data into a more regular structure, or
downsample your data—Uber does this for demand estimation.

Imputation is another option too, where we try and fill in
missing data to make a regular structure

And even if the assumptions hold, it doesn’t mean that
there’s not a better way.
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Grace Liu
cnn doesn’t know how to handle the empty space
cnn is good with ‘dense’ data



Motivating Question

What happens if the data isn’t nicely structured and suitable for
a CNN? How do we manage real world data sets?
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Real World Data

Real world data doesn’t often exist on nice grids!
1. Traffic Graphs
2. Sensor network data
3. The relationship between your limbs as you move
4. Taxi demand
5. Social networks

We need a general language to describe the relationships
between entities.

One potential solution is to use graphs.

6/31

Grace Liu
graph is the way to describe the relationship !



Real World Data
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Real World Data

It is possible to represent this as a matrix—specifically an
adjacency matrix corresponding to all the links. But the matrix
would inherently be incredibly sparse, which would make it
inappropriate for CNNs. 8/31

Grace Liu
how to represent this in matrix?!
- difficult

Grace Liu
which ingredients are used with other ingredients
- a spase matrix



Graphs

▶ Graphs are a collection of Vertices (or Nodes) V and Edges
E. For deep learning, we presume that the Graph Nodes
have attributes X ∈ Rn×d.

▶ It is also possible that the edges have attributes Xe ∈ Rm×c.
These properties can be constant or vary with time.

▶ With a Graph Convolution Network, we want to aggregate
information from the neighbours of a node.

▶ A neighbourhood can be more than just the nodes
immediate neighbours. 9/31
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Predictions on Graphs

The big question is: How do we take advantage of this
relational structure to make better predictions?

Rather than abstracting them to make the data fit modelling
frameworks (like CNNs), we instead want to explicitly model
these relationships to improve predictive performance.
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Graph Neural Networks
With a graph neural network, we want to learn how to
aggregate and propagate information across the graph, in a
way that helps us extra local (node specific) or global (graph
specific) features.
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What exactly is Convolution again?

(f ∗ g)(x) =
∫
Rd

f (y)g(x − y)dy =

∫
Rd

f (x − y)g(y)dy.

▶ In general, a convolution is the distortion of one function
by another, so one takes the properties of the other.

▶ In a CNN, we project the data onto the convolution kernel,
and extract properties about the local neighbourhood
within the matrix representation.
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CNN Networks

hi ∈ RF are the hidden layer activations of each pixel.
Update the hidden layer by
h(l+1)
j = σ

(∑
∀i W

(l)
i h(l)i

)
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Graph Convolutional Networks

To update:
h(l+1)
0 = σ

(
W(l)

0 h(l)
0 +W(l)

1 h(l)
1 +W(l)

2 h(l)
2 +W(l)

3 h(l)
3 +W(l)

4 h(l)
4

)
Note how each node has a single weight Wi, rather than a
unique weight for each link.
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Graph Convolutional Networks

But how do we account for the fact that some nodes have fewer
connections?
Weight the update, so that:
h(l+1)
i = σ

(
Wih

(l)
0 +

∑
∀j∈Ni

f (i,
∣∣Nj

∣∣)h(l)
j W(l)

j

)
One possible weighting is f (i,

∣∣Nj
∣∣) = 1

|Ni|
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Grace Liu
how much weighting do i want to give in the hidden states node
divide by the node connected to  it - Equal Contribution from Neighbors

Grace LIu



Graph Network Extensions

H(l+1) = σ
(
H(l)W(l)

0 + ÃH(l)W(l)
1

)
Can be generalised as

H(l+1) = σ
(
H(l)W(l)

0 + Agg
(
{h(l)j ,∀j ∈ Ni}

))
Where the Agg function can be nearly anything. Examples
include max–pooling

Agg = γ ({Qh})
where γ is a mean, max, or min function. We can also apply
LSTMs to the output (or even, in some cases, on the hidden
layers too)

Agg = LSTM(h)
16/31

Grace Liu
aggregation function



Efficient Graph Updates
Just summing over all the connecting nodes is neither efficient,
nor tensor–like. The update procedure can instead by framed as

H(l+1) = σ
(
H(l)W(l)

0 + ÃH(l)W(l)
1

)
where Ã = D−1/2AD1/2 is the Laplacian operator.
H(l) = [h(l)

1 ,h(l)
1 , . . . ,h(l)

N ]. In this A is the graph adjacency
matrix, for which Ai,j = 1 if there’s a link from node i to j, D is
the diagonal degree matrix of A, where

Dii =
∑
∀i

Aij

Instead of using Ã = D−1/2AD1/2, can use the modified
Laplacian L = IN +D−1/2AD1/2, so that

H(l+1) = σ
(
LH(l)W(l) + b(l)

)
17/31

Grace Liu

L is a modified Laplacian matrix used to incorporate both the graph's structure and self-loops for stable and effective feature propagation across nodes.



Graph Edge Networks
But real data of interest might exist on the nodes and the edges.

Edge hidden weights can be assigned as

h(l)
(i,j) = f (l)e

(
h(l)
i ,h(l)

j ; x(i,j)
)
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Grace Liu
edges can have information as well!



Graph Edge Networks

Edge hidden weights can be assigned as

h(l)
(i,j) = f (l)e

(
h(l)
i ,h(l)

j ; x(i,j)
)

Vertex hidden weights are then

h(l+1)
j = f (l)v

 ∑
∀i∈Nj

h(l)
(i,j); xi


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Grace Liu
edge function first, and then the vertix function



The Final Layer

The final layer can be processed in a number of ways.
softmax(zi) can be used for node classification, and
softmax(

∑
zi) for graph classification. The importance of links

can be predicted by σ(zTi zj). Other activation functions can be
used for regression.
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Grace Liu
the output may not necessarily be a graph, can be decoded as relationships etc.



Summary so far

▶ Graph networks discard the structure of tensor/matrix
blocks in exchange for flexible discretisations.

▶ Information can be encoded at the graph nodes and edges.
These properties can even be time varying subject to local
or global conditions.

▶ Care needs to be taken with how the networks weigh
varying numbers of connections into a node.
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Grace Liu
how you define



Training

▶ With a CNN, all information is loaded into memory. If our
data is an image, then we load the entire image at once.

▶ In a GCN, we can do the same thing. But a Graph
G = (E,V) has a lot more information to load in, and
there’s no implicit structure.

▶ But with a GCN, we don’t need global information to train
or run the model. So can randomly select a node, expand
over its neighbours, and train over a subset of the graph.
Changing this subset over training allows global behaviour
to be learned.

22/31
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the connection is informative -> more space
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Grace Liu
GPU works well with well structured data
- GPUs (Graphics Processing Units) are designed to handle highly parallelizable tasks. Their origin in graphics rendering for video games required them to handle vast numbers of pixels and vertices simultaneously. As a result, their architecture is optimized for handling large arrays of data where the same operation is performed on each element in parallel. 



Case Study: Google Maps
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Case Study: Google Maps

Create the graph network, and then at each node enter a
sequence of time series data.
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Case Study: Google Maps

Behaviour across the whole network can be described by a
Graph Convolution Network, embedded within an LSTM–like
structure.
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Case Study: Google Maps
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Grace Liu
good performance but takes many epoch to train



Case Study: Google Maps

27/31

Grace Liu
what resolution is required (need many techniques to find



Case Study: Point Clouds

Figure: ShapeNet point clouds

These can be represented as a density matrix, but this approach
may fail in the case of complex geometries, noisy data, or areas
with holes. Would require significant preprocessing, as point
clouds are irregular and unordered. 28/31



Case Study: Point Clouds

Figure: Architecture from ”Towards Efficient Graph Convolutional
Networks for Point Cloud Handling” Li et. al, 2021
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Case Study: Point Clouds

Figure: Architecture from ”Towards Efficient Graph Convolutional
Networks for Point Cloud Handling” Li et. al, 2021

While GNNs are less efficient than CNNs, as a relatively new
and emerging architecture there’s still plenty of scope for
improvements.
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Grace Liu
trade off - more informative but computational expensive!



Overview

The biggest feature of Graph Neural Networks is their
flexibility. A GNN can perform almost any operation that you
could see with a traditional CNN, but with extra flexibility in
how you design the network.
This flexibility in turn allows ML practitioners to both approach
a greater range of problems, and to tackle traditional problems
with the potential for greater accuracy.
With careful design, even with the additional overhead of
managing the graph, they also hold the potential to be more
scalable to large data sets than other NN approaches.
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