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This lecture

* Unsupervised learning

* Diversity of problems
* k-means refresher

* Gaussian mixture model (GMM)

* A probabilistic approach to clustering
* The GMM model
* GMM clustering as an optimisation problem

* Briefing Expectation-Maximisation (EM) algorithm
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Unsupervised Learning

A large branch of ML that concerns
with learning the structure of the
data in the absence of labels
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Main learning paradigms so far

e Supervised learning: Overarching aim is making
predictions from data

* We studied methods in the context of this aim: e.g.
linear/logistic regression, DNN, SVM

* We hadinstancesx; € R™,i =1, ...,n and

corresponding labels y; for model fitting, aiming to
predict labels for new instances

* Can be viewed as a function approximation problem, but
with a big caveat: ability to generalise is critical

* Bandits: a setting of partial supervision where subroutine
in contextual bandits requires supervised learning
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Now: Unsupervised learning

* In unsupervised learning, there is no dedicated
variable called a “label”

O 0O HE EE
* Instead, we just have asetof 0o "
pointsx; ER™,i=1,..,n Ogpt o
O O
O
* Aim of unsupervised learning 0 .'...-
is to explore the structure Em T =

(patterns, regularities) of data

* The aim of “exploring the structure” is vague
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Unsupervised learning tasks

* Diversity of tasks fall into unsupervised learning
category
* Clustering (now)
* Dimensionality reduction (autoencoders)
* Learning parameters of probabilistic models (before/now)

* Applications and related tasks are numerous :

* Market basket analysis. E.g., use supermarket transaction
logs to find items that are frequently purchased together

* Qutlier detection. E.g., find potentially fraudulent credit
card transactions

* Often unsupervised tasks in (supervised) ML pipelines
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Refresher: k-means clustering

1. Initialisation: choose k cluster centroids randomly

2. Update:

a) Assign points to the nearest™ centroid

b) Compute centroids under the current assignment

3. Termination: if no change then stop

4. Go to Step 2
*Distance represented by choice of metric typically L,

Still one of the most popular data mining algorithmes.
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Refresher: k-means clustering
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Requires specifying
the number of
clusters in advance

Measures
“dissimilarity” using
Euclidean distance

Finds “spherical”
clusters

An iterative
optimization
procedure
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Mini Summary

* Unsupervised learning

* Face value: drop labels from training. That’s it

* Actually: catch-all for many many ML tasks, even as steps
in supervised learning pipelines

* Refresher: k-means
* Import next as we introduce GMMs

Next time: The Gaussian mixture model
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Gaussian Mixture Model

A probabilistic view of clustering.
Simple example of a latent variable model.
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Modelling uncertainty in data clustering

k-means clustering assigns each point to exactly one cluster

* Does this make sense for points that are between two clusters?
* Clustering is often not well defined to begin with!

Like k-means, a probabilistic mixture model requires the user to choose
the number of clusters in advance

Unlike k-means, the probabilistic model gives us a power to express
uncertainly about the origin of each point

*Each point originates from cluster ¢ with probabilityw,,c =1, ..., k

That is, each point still originates from one particular cluster (aka
component), but we are not sure from which one

Next

*  Clustering becomes model fitting in probabilistic sense. Philosophically satisfying.

* Individual components modelled as Gaussians
*  Fitting illustrates general Expectation Maximization (EM) algorithm

11
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Clustering: probabilistic model

Data points x; are independent and identically distributed (i.i.d.) samples from a
mixture of K distributions (components)

Each component in the mixture is what we call a cluster
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In principle, we can adopt any probability distribution for the components, however,
the normal distribution is a common modelling choice = Gaussian Mixture Model
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Normal (aka Gaussian) distribution

* Recall that a 1D Gaussian is

N(x|u, o) = 21 exp <_M>

7'[0'2 20'2

* And a d-dimensional Gaussian is
d 1 1
N(x|u,2) = (2m) Z|Z| Zexp (— 5 (x = W 'E(x - u))

* X is a PSD symmetric d Xd matrix, the covariance matrix
* |X| denotes determinant
* No need to memorize the full formula.
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(a) 1-Dim (b) 2jDim
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Gaussian mixture model (GMM): One point

* Cluster assignment of point Latent point’s

* Multinomial distribution on k outcomes cluster

assignment
* P(Z = j) described by P(C;) =w; = 0
with Z;Ll w; =1
. . Observed
Location of point soint
** Each cluster has its own Gaussian distribution location
* Location of point governed by its cluster
assignment

* P(X|Z=j) = N(uj,zj) class conditional density

* Model’s parameters: wj, 1, Xj, ] =1, v, Kk

14
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From marginalisation to mixture distribution

* When fitting the model to observations, we’ll be maximising likelihood of
observed portions of the data (the X’s) not the latent parts (the Z’s)

* Marginalising out the Z’s derives the “familiar” mixture distribution

0.7
* @aussian mixture distribution: ol
k 8 1D example
0.5¢
@ =Y wans)
j=1 |
k 0.3t
= Z P(C;) P (x]C))
j=1 0.1¢
* A convex combination of Gaussians % 4 3 2 1 0 1 2 3 4 5

Mixture and individual component densities

. . . . are re-scaled for visualisation purposes
* Simply marginalization at work
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Clustering as model estimation

data points are generated by a GMM

** Each point in our dataset originates from our
mixture distribution

** Shared parameters between points:
w00t independence assumption Q
* Clustering now amounts to finding parameters
of the GMM that “best explains” observed data

* Given a set of data points, we assume that G

e Call upon old friend MLE principle to find
parameter values that maximise p(x4, ..., X;;)
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Mini Summary

* GMM is just another D-PGM
e Some variables are observed some latent

* Convenient to model location as generated by cluster
assignment

* Shared clusters arise from independence b/w points

* Mixture distribution arises algebraically from
marginalisation

Next: MLE to fit the model, again motivating EM algorithm
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Briefing Expectation-
Maximisation Algorithm

We want to implement MLE but we have
unobserved r.v.’s that prevent clean
decomposition as happens in fully
observed settings
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Fitting the GMM G

* Modelling the data points as independent, aim is
to find P(C;), uj, Xj, j = 1, ..., k that maximise

P(xl, ...,xn) — ?:1 Z;_C=1 P(C])P(xl|C])
where P(x|C;) = NV (x|u;, X})

Can be solved analytically?

i=1..n
* Taking the derivative of this expression is pretty awkward, try
the usual log trick

n k
log P(xq, ..., xp) = leg z P(CJ)P(xilcj)
=1 \/=

- Expectation-Maximisation (EM)
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Motivation of EM

* Consider a parametric probabilistic model p(X|@), where X
denotes data and 0 denotes a vector of parameters

* According to MLE, we need to maximise p(X|@0) as a
function of 6

+ equivalently maximise log p(X|0) Z N
@

>
@
* There can be a couple of issues with this task

1. Sometimes we don’t observe some of the variables needed
to compute the log likelihood
* Example: GMM cluster membership Z is not known in advance

2. Sometimes the form of the log likelihood is inconvenient to
work with

* Example: taking a derivative of GMM log likelihood results in a
cumbersome equation
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Expectation-Maximisation (EM) Algorithm

* |nitialisation Step:

* Initialize K clusters: C,, ..., C¢
(44 2;) and P(C;) for each cluster j.

* [teration Step:

* Estimate the cluster of each datum mm) Expectation
p(C;1x)

+ Re-estimate the cluster parameters L
P mmp Maximisation

(u;,%,), p(C,) for each cluster j
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Summary

* Unsupervised learning

* Diversity of problems

* Gaussian mixture model (GMM)

* A probabilistic approach to clustering
* The GMM model
* GMM clustering as an optimisation problem

* MLE: Motivating Expectation Maximization (EM)
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