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This lecture

• Unsupervised learning
* Diversity of problems
* k-means refresher

• Gaussian mixture model (GMM)
* A probabilistic approach to clustering
* The GMM model
* GMM clustering as an optimisation problem

• Briefing Expectation-Maximisation (EM) algorithm
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Unsupervised Learning

A large branch of ML that concerns 
with learning the structure of the 

data in the absence of labels
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Main learning paradigms so far
• Supervised learning: Overarching aim is making 

predictions from data

• We studied methods in the context of this aim: e.g.
linear/logistic regression, DNN, SVM

• We had instances 𝒙! ∈ 𝑹", 𝑖 = 1,… , 𝑛 and 
corresponding labels 𝑦! for model fitting, aiming to 
predict labels for new instances

• Can be viewed as a function approximation problem, but 
with a big caveat: ability to generalise is critical

• Bandits: a setting of partial supervision where subroutine 
in contextual bandits requires supervised learning
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Now: Unsupervised learning

• In unsupervised learning, there is no dedicated 
variable called a “label”

• Instead, we just have a set of 
points 𝒙! ∈ 𝑹", 𝑖 = 1,… , 𝑛

• Aim of unsupervised learning 
is to explore the structure
(patterns, regularities) of data

• The aim of “exploring the structure” is vague
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Unsupervised learning tasks
• Diversity of tasks fall into unsupervised learning 

category
* Clustering (now)
* Dimensionality reduction (autoencoders)
* Learning parameters of probabilistic models (before/now)

• Applications and related tasks are numerous :
* Market basket analysis. E.g., use supermarket transaction 

logs to find items that are frequently purchased together
* Outlier detection. E.g., find potentially fraudulent credit 

card transactions
* Often unsupervised tasks in (supervised) ML pipelines
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Refresher: k-means clustering

1. Initialisation: choose 𝑘 cluster centroids randomly

2. Update:
a) Assign points to the nearest* centroid
b) Compute centroids under the current assignment

3. Termination: if no change then stop

4. Go to Step 2

*Distance represented by choice of metric typically L2

Still one of the most popular data mining algorithms.
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Refresher: k-means clustering

8Figure: Bishop, Section 9.1

Data: Old Faithful 
Geyser Data: waiting 

time between 
eruptions and the 

duration of eruptions

Requires specifying 
the number of 
clusters in advance

Measures 
“dissimilarity” using 
Euclidean distance

Finds “spherical” 
clusters

An iterative 
optimization 
procedure
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Mini Summary

• Unsupervised learning
* Face value: drop labels from training. That’s it
* Actually: catch-all for many many ML tasks, even as steps 

in supervised learning pipelines

• Refresher: k-means
* Import next as we introduce GMMs

Next time: The Gaussian mixture model
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Gaussian Mixture Model

A probabilistic view of clustering.
Simple example of a latent variable model.
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Modelling uncertainty in data clustering

• k-means clustering assigns each point to exactly one cluster
* Does this make sense for points that are between two clusters?
* Clustering is often not well defined to begin with!

• Like k-means, a probabilistic mixture model requires the user to choose 
the number of clusters in advance

• Unlike k-means, the probabilistic model gives us a power to express 
uncertainly about the origin of each point
* Each point originates from cluster 𝑐 with probability 𝑤! , 𝑐 = 1,… , 𝑘

• That is, each point still originates from one particular cluster (aka 
component), but we are not sure from which one

• Next
* Clustering becomes model fitting in probabilistic sense. Philosophically satisfying.
* Individual components modelled as Gaussians
* Fitting illustrates general Expectation Maximization (EM) algorithm
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Clustering: probabilistic model
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Data points xi are independent and identically distributed (i.i.d.) samples from a 
mixture of K distributions (components) 

Cluster 1Cluster 2

Each component in the mixture is what we call a cluster 

In principle, we can adopt any probability distribution for the components, however, 
the normal distribution is a common modelling choice à Gaussian Mixture Model
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Normal (aka Gaussian) distribution
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• Recall that a 1D Gaussian is

𝒩 𝑥|𝜇, 𝜎 ≡
1
2𝜋𝜎!

exp −
𝑥 − 𝜇 !

2𝜎!

• And a 𝑑-dimensional Gaussian is

𝒩 𝒙|𝝁, 𝚺 ≡ 2𝜋 "#! 𝚺 "$! exp −
1
2
𝒙 − 𝝁 %𝚺"$ 𝒙 − 𝝁

* 𝚺 is a PSD symmetric 𝑑×𝑑 matrix, the covariance matrix
* 𝚺 denotes determinant
* No need to memorize the full formula.

Figure: Bishop
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Gaussian mixture model (GMM): One point
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• Cluster assignment of point
* Multinomial distribution on k outcomes
* 𝑃 𝑍 = 𝑗 described by P 𝐶𝑗 = 𝑤! ≥ 0

with ∑!"#$ 𝑤! = 1

• Location of point
* Each cluster has its own Gaussian distribution
* Location of point governed by its cluster 

assignment

* 𝑃 𝑿|𝑍 = 𝑗 = 𝒩 𝝁!, 𝚺𝒋 class conditional density

• Model’s parameters:    𝑤3, 𝝁3, 𝚺3, 𝑗 = 1,… , 𝑘

𝑍

X

Latent point’s 
cluster 

assignment

Observed
point

location
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From marginalisation to mixture distribution
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1D example

Mixture and individual component densities 
are re-scaled for visualisation purposes

Figure: Bishop

• When fitting the model to observations, we’ll be maximising likelihood of 
observed portions of the data (the X’s) not the latent parts (the Z’s)

• Marginalising out the Z’s derives the “familiar” mixture distribution

• Gaussian mixture distribution:

𝑃 𝒙 ≡6
!"#

$

𝑤!𝒩 𝒙|𝝁!, 𝚺𝒋

≡6
!"#

$

P 𝐶𝑗 𝑃 𝒙|𝑪𝒋

• A convex combination of Gaussians

• Simply marginalization at work
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Clustering as model estimation

• Given a set of data points, we assume that 
data points are generated by a GMM
* Each point in our dataset originates from our 

mixture distribution
* Shared parameters between points: 

w00t independence assumption

• Clustering now amounts to finding parameters 
of the GMM that “best explains” observed data

• Call upon old friend MLE principle to find 
parameter values that maximise 𝑝(𝒙#, … , 𝒙$)
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Mini Summary

• GMM is just another D-PGM

• Some variables are observed some latent

• Convenient to model location as generated by cluster 
assignment

• Shared clusters arise from independence b/w points

• Mixture distribution arises algebraically from 
marginalisation

Next: MLE to fit the model, again motivating EM algorithm
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Briefing Expectation-
Maximisation Algorithm

We want to implement MLE but we have 
unobserved r.v.’s that prevent clean 
decomposition as happens in fully 

observed settings
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Fitting the GMM

• Modelling the data points as independent, aim is 
to find 𝑷 𝑪𝒋 , 𝝁3, 𝚺3, 𝑗 = 1,… , 𝑘 that maximise
𝑃 𝒙#, … , 𝒙& = ∏'"#

& ∑!"#$ P 𝐶𝑗 𝑃 𝒙'|𝐶𝑗
where 𝑃 𝒙|𝑪𝒋 ≡ 𝒩(𝒙|𝝁!, 𝚺!)
Can be solved analytically?

• Taking the derivative of this expression is pretty awkward, try 
the usual log trick

log 𝑃 𝒙9, … , 𝒙: =3
4;9

:

log 3
3;9

<

P 𝐶𝑗 𝑃 𝒙4|𝐂3

à Expectation-Maximisation (EM)
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Motivation of EM
• Consider a parametric probabilistic model 𝑝 𝑿|𝜽 , where 𝑿

denotes data and 𝜽 denotes a vector of parameters

• According to MLE, we need to maximise 𝑝 𝑿|𝜽 as a 
function of 𝜽
* equivalently maximise log 𝑝 𝑿|𝜽

• There can be a couple of issues with this task

1. Sometimes we don’t observe some of the variables needed 
to compute the log likelihood
* Example: GMM cluster membership Z is not known in advance

2. Sometimes the form of the log likelihood is inconvenient to 
work with
* Example: taking a derivative of GMM log likelihood results in a 

cumbersome equation

20art: Ebrahim at Wikimedia Commons (CC4)
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Expectation-Maximisation (EM) Algorithm

• Initialisation Step:
* Initialize K clusters: C1, …, CK 

• Iteration Step:
* Estimate the cluster of each datum

* Re-estimate the cluster parameters
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(µj, Sj) and P(Cj) for each cluster j.  

)|( ij xCp

)(),,( jjj CpSµ for each cluster j

Expectation 

Maximisation
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Summary
• Unsupervised learning

* Diversity of problems

• Gaussian mixture model (GMM)
* A probabilistic approach to clustering
* The GMM model
* GMM clustering as an optimisation problem

• MLE: Motivating Expectation Maximization (EM)
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