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This lecture

• Uncertainty not captured by point estimates 

• Bayesian approach preserves uncertainty

• Sequential Bayesian updating

• Conjugate prior (Normal-Normal)

• Using posterior for Bayesian predictions on test
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Training == optimisation (?)
Stages of learning & inference:

• Formulate model

• Fit parameters to data

• Make prediction
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p(y|x) = sigmoid(x0w) p(y|x) = Normal(x0w;�2)

p(y⇤|x⇤) = sigmoid(x0
⇤ŵ)

Regression

!𝒘 referred to as a ‘point estimate’

E[y⇤] = x0
⇤ŵ

ŵ = argmaxw p(y|X,w)p(w) ditto
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Bayesian Alternative
Nothing special about !𝒘… use more than one value?

• Formulate model

• Consider the space of likely parameters – those that 
fit the training data well

• Make ‘expected’ prediction
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p(y|x) = sigmoid(x0w) p(y|x) = Normal(x0w;�2)

p(y⇤|x⇤) = Ep(w|Xi,y) [sigmoid(x0w)]

Regression

p(y⇤|x⇤) = Ep(w|Xi,y)

⇥
Normal(x0

⇤w,�2)
⇤

p(w|X,y)

p(y⇤|x⇤) = Ep(w|Xi,y) [sigmoid(x0w)]

Grace Liu
posterior
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Uncertainty

From small training sets, we rarely have complete 
confidence in any models learned. Can we quantify the 

uncertainty, and use it in making predictions?
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Regression Revisited

Linear regression: y = w0 + w1 x
(here y = humidity, x = temperature)
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• Learn model from data
* minimise error residuals 

by choosing weights
!𝐰 = 𝐗!𝐗 "#𝐗!𝐲

• But… how confident 
are we 
* in !𝐰?
* in the predictions?
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Do we trust point estimate !𝐰 ?
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• How stable is learning?
* !𝐰 highly sensitive to noise
* how much uncertainty in 

parameter estimate?
* more informative if

neg log likelihood objective 
highly peaked

• Formalised as Fisher 
Information matrix
* E[2nd deriv of NLL]

* measures curvature of 
objective about !𝐰 

I =
1

�2
X0X

Figure: Rogers and Girolami p81
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Mini Summary

• Uncertainty not captured by point estimates (MLE, MAP)

• Uncertainty might capture range of plausible parameters

• (Frequentist) idea of Fisher information as likelihood 
sensitivity at point estimates

Next time: The Bayesian view (reminder)
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Grace LIu

Grace Liu
WHY
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The Bayesian View

Retain and model all unknowns (e.g., uncertainty over 
parameters) and use this information when making inferences.
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A Bayesian View

• Could we reason over all parameters that are 
consistent with the data?
* weights with a better fit to the training data should be 

more probable than others
* make predictions with all these weights, scaled by their 

probability

• This is the idea underlying Bayesian inference
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Uncertainty over parameters

• Many reasonable solutions to objective
* why select just one?

• Reason under all possible parameter values
* weighted by their posterior probability

• More robust predictions
* less sensitive to overfitting,

particularly with small
training sets

* can give rise to more 
expressive model class 
(Bayesian logistic 
regression becomes non-linear!)
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Frequentist vs Bayesian “divide”

• Frequentist: learning using point estimates, 
regularisation, p-values …
* backed by sophisticated theory on simplifying assumptions
* mostly simpler algorithms, characterises much practical 

machine learning research

• Bayesian: maintain uncertainty, marginalise (sum) 
out unknowns during inference
* some theory
* often more complex algorithms, but not always
* often (not always) more computationally expensive
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Mini Summary

• Frequentist’s central preference of point estimates don’t 
capture uncertainty

• Bayesian view is to quantify belief in prior, update it to 
posterior using observations

Next time: Bayesian approach to linear regression
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Bayesian Regression

Application of Bayesian inference
to linear regression, using

Normal prior over w
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Revisiting Linear Regression

• Recall probabilistic formulation 
of linear regression

• Bayes rule:

• Gives rise to penalised objective 
(ridge regression)
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y ⇠ Normal(x0w,�2)

w ⇠ Normal(0, �2ID)

p(w|X,y) =
p(y|X,w)p(w)

p(y|X)

max
w

p(w|X,y) = max
w

p(y|X,w)p(w)

point estimate taken here, avoids 
computing marginal likelihood term

ID = D x D identity matrix
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Bayesian Linear Regression

• Rewind one step, consider full posterior

• Can we compute the denominator (marginal 
likelihood or evidence)?
* if so, we can use the full posterior, not just its mode
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Here we 
assume noise 

var. known

p(w|X,y,�2) =
p(y|X,w,�2)p(w)

p(y|X,�2)

=
p(y|X,w,�2)p(w)R
p(y, |X,w,�2)p(w)dw

Grace LIu

Grace Liu
Normal

Grace Liu
Normal
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Bayesian Linear Regression (cont)

• We have two Normal distributions
* normal likelihood x normal prior

• Their product is also a Normal distribution
* conjugate prior: when product of likelihood x prior 

results in the same distribution as the prior
* evidence can be computed easily using the normalising 

constant of the Normal distribution
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p(w|X,y,�2) / Normal(w|0, �2ID)Normal(y|Xw,�2IN )

/ Normal(w|wN ,VN )

closed form solution for 
posterior!
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Bayesian Linear Regression (cont)
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wN =
1

�2
VNX0y

VN = �2(X0X+
�2

�2
ID)�1

Advanced: verify by expressing 
product of two Normals, gathering 

exponents together and ‘completing 
the square’ to express as squared 

exponential (i.e., Normal distribution).

where

p(w|X,y,�2) / Normal(w|0, �2ID)Normal(y|Xw,�2IN )

/ Normal(w|wN ,VN )
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Bayesian Linear Regression example
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Step 1: select prior, here spherical about 0 Step 2: observe training data

Step 3: formulate posterior, from prior & likelihood Samples from posterior



COMP90051 Statistical Machine Learning

Sequential Bayesian Updating

• Can formulate                            for given dataset

• What happens as we see more and more data?
1. Start from prior 
2. See new labelled datapoint
3. Compute posterior
4. The posterior now takes role of prior 

& repeat from step 2
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p(w|X,y,�2)

p(w)

p(w|X,y,�2)

Grace Liu
one data point

Grace LIu
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Sequential Bayesian Updating

Bishop Fig 3.7, p155 21

3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.
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3.3. Bayesian Linear Regression 155

Figure 3.7 Illustration of sequential Bayesian learning for a simple linear model of the form y(x,w) =
w0 + w1x. A detailed description of this figure is given in the text.

• Initially know little, many 
regression lines licensed

• Likelihood constrains 
possible weights such that 
regression is close to point

• Posterior becomes more 
refined/peaked as more 
data introduced

• Approaches a point mass
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Stages of Training

1. Decide on model formulation & prior

2. Compute posterior over parameters, p(w|X,y)

22

3. Find mode for w

4. Use to make 
prediction on 
test

3. Sample many w

4. Use to make 
ensemble average 
prediction on test

3. Use all w to 
make expected
prediction on 
test

MAP approx. Bayes exact Bayes
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Prediction with uncertain w

• Could predict using sampled regression curves
* sample S parameters, 𝒘 $ , 𝑠 ∈ {1,… , 𝑆}

* for each sample compute prediction 𝑦∗
($)at test point x*

* compute the mean (and var.) over these predictions
* this process is known as Monte Carlo integration

• For Bayesian regression there’s a simpler solution
* integration can be done analytically, for 

𝑝(2𝑦∗ |𝑿, 𝒚, 𝒙∗, 𝜎() = ∫ 𝑝 𝒘 𝑿, 𝒚, 𝜎()𝑝(𝑦∗ 𝒙∗, 𝒘, 𝜎( 𝑑𝒘
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Prediction (cont.)

• Pleasant properties of Gaussian distribution means 
integration is tractable

* additive variance based on x*  match to training data
* cf. MLE/MAP estimate, where variance is a fixed constant
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p(y⇤|x⇤,X,y,�2) =

Z
p(w|X,y,�2)p(y⇤|x⇤,w,�2)dw

=

Z
Normal(w|wN ,VN )Normal(y⇤|x0

⇤w,�2)dw

= Normal(y⇤|x0
⇤wN ,�2

N (x⇤))

�2
N (x⇤) = �2 + x0

⇤VNx⇤

(wN and VN defined in posterior when fitting Bayesian linear regression)

Grace Liu
some math between but can be taken as given for the course
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Bayesian Prediction example

25

MLE (blue) and MAP (green) 
point estimates, with fixed 
variance

variance higher further 
from data points

samples from posterior

MLE, MAP fit

Data: y = x sin(x); Model = cubic
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Caveats

• Assumptions
* known data noise parameter, σ2

* data was drawn from the model distribution

• In real settings, σ2 is unknown
* has its own conjugate prior

Normal likelihood ⨉ InverseGamma prior 
results in InverseGamma posterior

* closed form predictive distribution, with student-T 
likelihood
(see Murphy, 7.6.3)
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Mini Summary

• Uncertainty not captured by point estimates (MLE, MAP)

• Bayesian approach preserves uncertainty
* care about predictions NOT parameters
* choose prior over parameters, then model posterior

• New concepts: 
* sequential Bayesian updating
* conjugate prior (Normal-Normal)

• Using posterior for Bayesian predictions on test

Next time: Bayesian classification, then PGMs
27


