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This lecture
• Bayesian ideas in discrete settings

* Beta-Binomial conjugacy
* Uniqueness up to proportionality
* Sunrise example
* Common conjugate pairs

• Bayesian logistic regression
* Non-conjugacy
* Pointer: Laplace approximation

• Rejection Sampling
* Monte Carlo sampling
* A stochastic method of posterior approximation 
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How to apply Bayesian view to discrete data?

• First off consider models which generate the input
* cf. discriminative models, which condition on the input
* I.e., p(y | x) vs p(x, y), Logistic Regression vs Naïve Bayes

• For simplicity, start with most basic setting
* n coin tosses, of which k were heads 
* only have x (sequence of outcomes), but no ‘classes’ y

• Methods apply to generative models over discrete 
data
* e.g., topic models, generative classifiers 

(Naïve Bayes, mixture of multinomials)
3
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Discrete Conjugate prior: Beta-Binomial

• Conjugate priors also exist for discrete spaces

• Consider n coin tosses, of which k were heads
* let p(head) = q from a single toss (Bernoulli dist)
* Inference question is the coin biased, i.e., is q ≈ 0.5

• Several draws, use
Binomial dist
* and its conjugate 

prior, Beta dist
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Beta distribution

5
Sourced from https://en.wikipedia.org/wiki/Beta_distribution
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Beta-Binomial conjugacy
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Bayesian posterior

trick: ignore 
constant factors 

(normaliser)

Sweet! We know the 
normaliser for Beta 
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Uniqueness up to normalisation

• A trick we’ve used many times:
When an unnormalized distribution is proportional to a recognised 
distribution, we say it must be that distribution

• If 𝑓(𝜃) ∝ 𝑔(𝜃) for 𝑔 a distribution, !(#)

∫! ! # &#
= 𝑔(𝜃).

• Proof: 𝑓(𝜃) ∝ 𝑔(𝜃) means that
𝑓 𝜃 = 𝐶 ) 𝑔 𝜃

*
'
𝑓 𝜃 𝑑𝜃 = 𝐶*

'
𝑔 𝜃 𝑑𝜃 = 𝐶

and the result follows from LHS1/LHS2 = RHS1/RHS2
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Laplace’s Sunrise Problem
Every morning you observe the sun rising. Based solely on this 

fact, what’s the probability that the sun will rise tomorrow?

• Use Beta-Binomial, where q is the Pr(sun rises in morning)
* posterior
* n = k = observer’s age in days
* let 𝛼 = 𝛽 = 1 (uniform prior)

• Under these assumptions 
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p(q|k, n) = Beta(q; k + ↵, n� k + �)

p(q|k) = Beta(q; k + 1, 1)

Ep(q|k) [q] =
k + 1

k + 2

’smoothed’ count of days 
where sun rose / did not
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Sunrise Problem (cont.)
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Day (n, k) k+α n-k+β E[q]

0 1 1 0.5

1 2 1 0.667

2 3 1 0.75

…

365 366 1 0.997

2920 
(8 years)

2921 1 0.99997

Consider human-meaningful period

Effect of prior diminishing with data, but never disappears completely.

q
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Suite of useful conjugate priors
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likelihood conjugate prior

Normal Normal (for mean)

Normal Inverse Gamma (for variance)
or Inverse Wishart (covariance)

Binomial Beta

Multinomial Dirichlet

Poisson Gamma

re
gr

es
sio

n
cl

as
sif

ic
at

io
n

co
un

ts



COMP90051 Statistical Machine Learning

Mini Summary

• Bayesian ideas in discrete settings
* Beta-Binomial conjugacy
* Uniqueness in proportionality
* Sunrise example
* Conjugate pairs

Next time: Bayesian logistic regression
11
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Bayesian Logistic
Regression
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Discriminative classifier, which conditions
on inputs. How can we do Bayesian 

inference in this setting?
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Now for Logistic Regression…

• Similar problems with parameter uncertainty 
compared to regression
* although predictive

uncertainty in-built
to model outputs
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8.4. Bayesian logistic regression 257
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Figure 8.5 (a) Two-class data in 2d. (b) Log-likelihood for a logistic regression model. The line is drawn
from the origin in the direction of the MLE (which is at infinity). The numbers correspond to 4 points
in parameter space, corresponding to the lines in (a). (c) Unnormalized log posterior (assuming vague
spherical prior). (d) Laplace approximation to posterior. Based on a figure by Mark Girolami. Figure
generated by logregLaplaceGirolamiDemo.

Unfortunately this integral is intractable.
The simplest approximation is the plug-in approximation, which, in the binary case, takes the

form

p(y = 1|x,D) ≈ p(y = 1|x,E [w]) (8.60)

where E [w] is the posterior mean. In this context, E [w] is called the Bayes point. Of course,
such a plug-in estimate underestimates the uncertainty. We discuss some better approximations
below.

Murphy Fig 8.5 & 8.6 p257-8

258 Chapter 8. Logistic regression

p(y=1|x, wMAP)
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decision boundary for sampled w

(b)

MC approx of p(y=1|x)
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(c)

numerical approx of p(y=1|x)
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Figure 8.6 Posterior predictive distribution for a logistic regression model in 2d. Top left: contours of
p(y = 1|x, ŵmap). Top right: samples from the posterior predictive distribution. Bottom left: Averaging
over these samples. Bottom right: moderated output (probit approximation). Based on a figure by Mark
Girolami. Figure generated by logregLaplaceGirolamiDemo.

8.4.4.1 Monte Carlo approximation

A better approach is to use a Monte Carlo approximation, as follows:

p(y = 1|x,D) ≈ 1

S

S∑

s=1

sigm((ws)Tx) (8.61)

where ws ∼ p(w|D) are samples from the posterior. (This technique can be trivially extended
to the multi-class case.) If we have approximated the posterior using Monte Carlo, we can reuse
these samples for prediction. If we made a Gaussian approximation to the posterior, we can
draw independent samples from the Gaussian using standard methods.

Figure 8.6(b) shows samples from the posteiror predictive for our 2d example. Figure 8.6(c)
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No conjugacy

• Can we use conjugate prior? E.g., 
* Beta-Binomial for generative binary models
* Dirichlet-Multinomial for multiclass (similar formulation)

• Model is discriminative, with parameters defined 
using logistic sigmoid*

* need prior over w, not q
* no known conjugate prior (!), thus use a Gaussian prior

• Approach to inference: Monte Carlo sampling

14* Or softmax for multiclass; same problems arise and similar solution

p(y|q,x) = qy(1� q)1�y

q = �(x0w)
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Approximation
• No known solution for the normalising constant

• Resolve by approximation

15

p(w|X,y) / p(w)p(y|X,w)

= Normal(0,�2I)
nY

i=1

�(x0
iw)yi(1� �(x0

iw))1�yi

Laplace approx.:
• assume posterior ≃ Normal about 

mode
• can compute normalisation constant, 

draw samples etc.
• Tractable MAP provides parameters for 

this (Normal) approximate posterior Murphy Fig 8.6 p258



How to approximate the posterior

▶ To see how to approximate the posterior, we need to go back to Bayes Theorem,

p(θ|y) = p(y |θ)p(θ)
p(y)

(1)

▶ Of the quantities in (1), what would you know analytically?

▶ p(θ) and p(y |θ).
▶ What purpose do the quantities that you do not know analytically serve?

▶ p(y) is a normalising constant. This is why people write,

p(θ|y) ∝ p(y |θ)p(θ)

▶ Hence to approximate the posterior, we often work with a un-normalised density
q(θ|y), which must satisfy q(θ|y) = c(y)p(y |θ)p(θ) = d(y)p(θ|y), where
c(y), d(y) are functions of y but not θ.

16 / 30
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Grace Liu
unnormalised density = likelihood * prior



Stochastic methods of posterior approximation

▶ Let’s first look at the hist graph (frequency of samples) and the probability
density function.

17 / 30



Stochastic methods of posterior approximation

▶ Now, let’s look at the hist graph and the probability density function.
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Stochastic methods of posterior approximation

▶ What can we do if our interested function q(θ) is like this?
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Grace Liu
sample from the un-normalised density:
area under q(θ) > 1



Stochastic methods of posterior approximation

▶ Let’s scale the q(θ)!
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Stochastic methods of posterior approximation

▶ Let’s show our samples back.
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Rejection sampling

▶ Maybe we can reject/delete some samples.

-1 10 0.5-0.5 -1 10 0.5-0.5

Number of Samples Probability Density

-1 10 0.5-0.5 -1 10 0.5-0.5

-1 10 0.5-0.5

Probability Density

-1 10 0.5-0.5

Rejected Samples

-1 10

Rejecting Rate

Accepting Rate

Samples from U(-1,1)

22 / 30

Grace Liu
reject some sample, as we need to sample some distribution that can cover our posterior distribution



Rejection sampling

▶ Can we reject/delete one sample θ?
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Grace Liu
uniformed distribution that covers q(θ)



Rejection sampling

▶ Sure. After we sample θ0, we can just sample a number x from U(0,1). If x < the
accepting rate, then we keep θ0. Otherwise, we reject θ0.
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Rejection sampling

▶ It is also clear that, if we have a θ1 such that q(θ1) = 0.5×M, then we will never
reject θ1, because the accepting rate of θ1 is 1 = 100%.
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Rejection sampling

▶ This is the well-known Monte Carlo (MC) method!
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Rejection sampling (more general descriptions)

▶ The idea behind rejection sampling is to find a density function g(θ) that
completely encases the posterior p(θ|y), or in practice the un-normalised density
q(θ|y), or equivalently

q(θ|y)
g(θ)

≤ M ′ ∀θ,

such that it is straight-forward to sample from g(θ). In our previous figures,
g(θ) = 0.5. Specifically, we sample thetas from U(-1,1).

▶ The generation of draws from the posterior then proceeds as follows:
▶ Sample θs from g(θ).
▶ Sample x from a standard uniform U(0,1).
▶ If x ≤ q(θs |y)

M′g(θs ) , accept θ
s , otherwise reject.

27 / 30

Grace Liu
g: uniform distribution between 0 and 1, then g(θ) = 1,
and M would be the max value of q(θ)
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Example of rejection sampling

▶ Assume y |p ∼ Bin(n, p) and that the prior distribution for p is Be(α, β).

▶ We know that the posterior distribution p|y is Be(y + α, n − y + β), but lets
assume you cannot sample directly from this distribution.

▶ We also know that p is bounded on [0, 1], so a simple choice for g(p) = 1, the
standard uniform distribution. Then M would correspond to the maximum of the
posterior, which occurs at pmax =

y+α−1
n+α+β−2 with

M =
Γ(n + α+ β)

Γ(y + α)Γ(n − y + β)
py+α−1
max (1− pmax)

n−y+β−1.
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Rejection sampling comments

▶ The challenge of rejection sampling is picking g(θ) such that q(θ|y) ≤ Mg(θ) ∀θ
while minimising the proportion of candidate samples being rejected.
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▶ In the case of the beta posterior example, as y , n increases, the probability of any
θs being accepted (area in red below dashed line in figure) declines.
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Rejection sampling comments

▶ Now, based on what you know about asymptotic theory, a normal distribution
based on the posterior mode truncated at [0, 1] might be a better choice for g(p).
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▶ As before, and also for ease of calculation, we choose M so that maxp p(p|y) =
M maxp g(p) matched. While the choice of g(p) looks better, especially for larger
n, it turns out that p(p|y)/g(p) ≤ M does not hold ∀p.
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Grace Liu
the proposed funciton can’t full cover
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Mini Summary

• Bayesian ideas in discrete settings
* Beta-Binomial conjugacy
* Conjugate pairs; Uniqueness in proportionality

• Bayesian classification (logistic regression)
* Non-conjugacy necessitates approximation

• Rejection sampling
* Monte Carlo sampling: A classic method to approximate 

posterior

Next time: probabilistic graphical models
31


