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This lecture

• Perceptron model
* Introduction to Artificial Neural Networks
* The perceptron model

• Perceptron training rule
* Stochastic gradient descent

• Kernel perceptron
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The Perceptron Model

A building block for artificial neural 
networks, yet another linear classifier
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Biological inspiration

• Humans perform well at many tasks that matter

• Originally neural networks were an attempt to 
mimic the human brain
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Artificial neural network

• Artificial neural network is  a 
network of processing 
elements

• Each element converts inputs 
to output

• The output is a function 
(called activation function) of 
a weighted sum of inputs

5

• As a crude approximation, the human brain can be thought 
as a mesh of interconnected processing nodes (neurons) 
that relay electrical signals

…

…

…



COMP90051 Statistical Machine Learning

Outline
• In order to use an ANN we need (a) to design network 

topology and (b) adjust weights to given data
* In this subject, we will exclusively focus on task (b) for a particular 

class of networks called feed forward networks

• Training an ANN means adjusting weights for training data 
given a pre-defined network topology

• First we will turn our attention to an individual network 
element, before building deeper architectures

6



COMP90051 Statistical Machine Learning

Perceptron model
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• 𝑥!, 𝑥" – inputs

• 𝑤!, 𝑤" – synaptic weights

• 𝑤# – bias weight

• 𝑓 – activation function

𝑥!

Σ 𝑓𝑥"

1

𝑓(𝑠)
𝑠

×𝑤!

×𝑤"

×𝑤#

Compare this 
model to logistic 

regression
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Perceptron is a linear binary classifier
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Perceptron is a 
binary classifier:

Predict class A if 𝑠 ≥ 0
Predict class B if 𝑠 < 0
where 𝑠 = ∑$%#& 𝑥$𝑤$

Perceptron is a linear classifier: 𝑠
is a linear function of inputs, and 
the decision boundary is linear

plane with 
data points

decision 
boundary

𝑥!

𝑥"

plane with 
values of 𝑠

Example for 
2D data
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Exercise: find weights of 
a perceptron capable of 
perfect classification of 
the following dataset

art: OpenClipartVectors
at pixabay.com (CC0)

𝒙𝟏 𝒙𝟐 𝒚

0 0 Class B

0 1 Class B

1 0 Class B

1 1 Class A
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Exercise: find weights of 
a perceptron capable of 
perfect classification of 
the following dataset

art: OpenClipartVectors
at pixabay.com (CC0)

𝒙𝟏 𝒙𝟐 𝒚

0 0 Class B

0 1 Class B

1 0 Class B

1 1 Class A
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Mini Summary

• Perceptron
* Introduction to Artificial Neural Networks
* The perceptron model

Next: Perceptron training
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Perceptron Training Rule

Gateway to stochastic gradient descent.
Convergence guaranteed by convexity.
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Loss function for perceptron
• “Training”: finds weights to minimise some loss. Which?

• Our task is binary classification. Encode one class as +1 and 
the other as −1. So each training example is now {𝒙, 𝑦}, 
where 𝑦 is either +1 or −1

• Recall that, in a perceptron, 𝑠 = ∑$%#& 𝑥$𝑤$, and the sign of 𝑠
determines the predicted class: +1 if 𝑠 > 0, and −1 if 𝑠 < 0

• Consider a single training example. 
* If 𝑦 and 𝑠 have same sign then the example is classified correctly. 
* If 𝑦 and 𝑠 have different signs, the example is misclassified

13
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Loss function for perceptron
• The perceptron uses a loss function in which there is no 

penalty for correctly classified examples, while the penalty 
(loss) is equal to 𝑠 for misclassified examples*

• Formally:
* 𝐿 𝑠, 𝑦 = 0 if both 𝑠, 𝑦 have the same sign
* 𝐿 𝑠, 𝑦 = 𝑠 if both 𝑠, 𝑦 have different signs

• This can be re-written as 𝐿 𝑠, 𝑦 = max 0,−𝑠𝑦

14* This is similar, but not identical to the SVM’s loss function: the hinge loss

𝐿(𝑠, 𝑦)

𝑠𝑦
0
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Stochastic gradient descent
• Randomly shuffle/split all training examples in 𝐵 batches

• Choose initial 𝜽(!)

• For 𝑖 from 1 to 𝑇

• For 𝑗 from 1 to 𝐵

• Do gradient descent update using data from batch 𝑗

• Advantage of such an approach: computational feasibility for 
large datasets

15

Iterations over the 
entire dataset are 

called epochs
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𝐿(𝒘) = max 0,−𝑠𝑦

𝑠 =.
!"#

$

𝑥!𝑤!

𝜂 is learning rate

Perceptron training algorithm
Choose initial guess 𝒘("), 𝑘 = 0

For 𝑖 from 1 to 𝑇 (epochs)

For 𝑗 from 1 to 𝑁 (training examples)

Consider example 𝒙$ , 𝑦$

Update*: 𝒘 %&& = 𝒘 % − 𝜂𝛁𝐿(𝒘(%))
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*There is no derivative 
when 𝑠 = 0, but this case 
is handled explicitly in the 
algorithm, see next slides
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Perceptron training rule

• We have 1213!
= 0 when 𝑠𝑦 > 0

* We don’t need to do update when an example is correctly classified

• We have 1213!
= −𝑥$ when 𝑦 = 1 and 𝑠 < 0

• We have 12
13!

= 𝑥$ when 𝑦 = −1 and 𝑠 > 0

• 𝑠 = ∑$%#& 𝑥$𝑤$

17

𝐿(𝑠, 𝑦)

𝑠𝑦
0
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Perceptron training algorithm
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If 𝑦 = 1, but 𝑠 < 0
𝑤! ← 𝑤! + 𝜂𝑥!
𝑤" ← 𝑤" + 𝜂

When misclassified: 𝒘 45! = −𝜂(±𝒙)

When classified correctly, weights are unchanged

(𝜂 > 0 is called learning rate)

If 𝑦 = −1, but 𝑠 ≥ 0
𝑤! ← 𝑤! − 𝜂𝑥!
𝑤" ← 𝑤" − 𝜂

Convergence Theorem: if the training data is 
linearly separable, the algorithm is guaranteed to 
converge to a solution. That is, there exist a finite 

𝐾 such that 𝐿 𝒘6 = 0



COMP90051 Statistical Machine Learning

Perceptron convergence theorem
• Assumptions

* Linear separability: There exists 𝒘∗ so that 𝑦! 𝒘∗ $𝒙! ≥ 𝛾 for all 
training data 𝑖 = 1,… ,𝑁 and some positive 𝛾.

* Bounded data: 𝒙! ≤ 𝑅 for 𝑖 = 1,… ,𝑁 and some finite 𝑅.

• Proof sketch
* Establish that 𝒘∗ $𝒘 % ≥ 𝒘∗ $𝒘 %&' + 𝛾
* It then follows that 𝒘∗ $𝒘 % ≥ 𝑘𝛾

* Establish that 𝒘 % (
≤ 𝑘𝑅(

* Note that cos 𝒘∗, 𝒘 % = 𝒘∗ &𝒘 '

𝒘∗ 𝒘 '

* Use the fact that cos … ≤ 1

* Arrive at 𝑘 ≤ *( 𝒘∗ (

+

19
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Pros and cons of perceptron learning
• If the data is linearly separable, the perceptron training 

algorithm will converge to a correct solution
* There is a formal proof ß good!
* It will converge to some solution (separating boundary), one of 

infinitely many possible ß bad!

• However, if the data is not linearly separable, the training will 
fail completely rather than give some approximate solution
* Ugly L

20
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Perceptron learning example

21

𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#
𝑤%

𝑤&

𝑤#

𝑥&

1 (learning rate 𝜂 = 0.1)

Basic setup
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Perceptron learning example

22

𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.2

𝑤" = 0.0

𝑤) = −0.1
𝑥&

1

Start with random weights

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

0.5
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Perceptron learning example
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𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.2

𝑤" = 0.0

𝑤) = −0.1
𝑥&

1

Consider training example 1

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

0.2𝑥% + 0.0𝑥& − 0.1 > 0

𝑤% ← 𝑤% − 𝜂𝑥% = 0.1
𝑤& ← 𝑤& − 𝜂𝑥& = −0.1
𝑤# ← 𝑤# − 𝜂 = −0.2

0.5

(1,1)

class -1
class 1
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Perceptron learning example
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𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.1

𝑤" = −0.1

𝑤) = −0.2
𝑥&

1

Update weights

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

2

(1,1)

class -1
class 1
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Perceptron learning example
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𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.1

𝑤" = −0.1

𝑤) = −0.2
𝑥&

1

Consider training example 2

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

2

(2,1)

0.1𝑥% − 0.1𝑥& − 0.2 < 0

𝑤% ← 𝑤% + 𝜂𝑥% = 0.3
𝑤& ← 𝑤& + 𝜂𝑥& = 0.0
𝑤# ← 𝑤# + 𝜂𝑥% = −0.1

class -1
class 1
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Perceptron learning example
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𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.3

𝑤" = 0.0

𝑤) = −0.1
𝑥&

1

Update weights

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

(2,1)

1/3

class -1
class 1
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Perceptron learning example
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𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = 0.3

𝑤" = 0.0

𝑤) = −0.1
𝑥&

1

Further examples

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

1/3

class -1
class 1

0.3𝑥% − 0.0𝑥& − 0.1 > 0
3rd point:	correctly	classified
4th point:	incorrect,	update

etc.
(1.5,0.5)

4th point



COMP90051 Statistical Machine Learning

Perceptron learning example

28

𝑥%

Σ 𝑓 4−1, 𝑠 < 0
1, 𝑠 ≥ 0

𝑠 = 𝑤%𝑥% + 𝑤&𝑥& + 𝑤#𝑤! = ⋯

𝑤" = ⋯

𝑤) = ⋯
𝑥&

1

Further examples

𝑥%

𝑥&

(learning rate 𝜂 = 0.1)

class -1
class 1

Eventually,	all	the	data	will	
be	correctly	classified	
(provided	it	is	linearly	

separable)
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Mini Summary

• Perceptron loss function

• Stochastic gradient descent

• Perceptron training rule
* Perceptron convergence theorem

Next: Kernel perceptron
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Kernel Perceptron

Another example of a kernelizable 
learning algorithm (like the SVM).
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Perceptron training rule: Recap

31

If 𝑦 = 1, but 𝑠 < 0
𝑤! ← 𝑤! + 𝜂𝑥!
𝑤" ← 𝑤" + 𝜂

When misclassified: 𝒘 45! = −𝜂(±𝒙)

When classified correctly, weights are unchanged

(𝜂 > 0 is called learning rate)

If 𝑦 = −1, but 𝑠 ≥ 0
𝑤! ← 𝑤! − 𝜂𝑥!
𝑤" ← 𝑤" − 𝜂

Suppose weights are initially set to 0

First update: 𝒘 = 𝜂𝑦$,𝒙$,
Second update: 𝒘 = 𝜂𝑦$,𝒙$, + 𝜂𝑦$-𝒙$-
Third update 𝒘 = 𝜂𝑦$,𝒙$, + 𝜂𝑦$-𝒙$- + 𝜂𝑦$.𝒙$.
etc. 
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• Weights always take the form 𝒘 = ∑TUVW 𝛼T𝑦T𝒙T, 
where 𝜶 some coefficients

• Perceptron weights always linear comb. of data!

• Recall that prediction for a new point 𝒙 is based on 
sign of 𝑤X +𝒘Y𝒙

• Substituting 𝒘 we get 𝑤X + ∑TUVW 𝛼T𝑦T𝒙TY𝒙

• The dot product 𝒙TY𝒙 can be replaced with a kernel

32

Accumulating updates: Data enters via dot products
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Choose initial guess 𝒘(X), 𝑘 = 0

Set 𝜶 = 𝟎

For 𝑡 from 1 to 𝑇 (epochs)

For each training example 𝒙T , 𝑦T
Predict based on 𝑤X + ∑ZUVW 𝛼Z𝑦Z𝒙TY𝒙Z

If misclassified, update each 𝛼Z ← 𝛼Z + 𝜂𝑦Z

33

Kernelised perceptron training rule



COMP90051 Statistical Machine Learning

Choose initial guess 𝒘(X), 𝑘 = 0

Set 𝜶 = 𝟎

For 𝑡 from 1 to 𝑇 (epochs)

For each training example 𝒙T , 𝑦T

Predict based on 𝑤X + ∑ZUVW 𝛼Z𝑦Z𝐾(𝒙T , 𝒙Z)

If misclassified, update each 𝛼Z ← 𝛼Z + 𝜂𝑦Z

34

Kernelised perceptron training rule

Becomes kernel 
matrix kij
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Mini Summary

• Accumulating weight updates leads to linear 
combinations of data

• Predictions are dot products with data

• Can replace these with kernel evaluations

• Leads to kernel perceptron with kernel training rule

Next time: Deep learning
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